ﻻ يوجد ملخص باللغة العربية
With increasing applications of 3D hand pose estimation in various human-computer interaction applications, convolution neural networks (CNNs) based estimation models have been actively explored. However, the existing models require complex architectures or redundant computational resources to trade with the acceptable accuracy. To tackle this limitation, this paper proposes HandFoldingNet, an accurate and efficient hand pose estimator that regresses the hand joint locations from the normalized 3D hand point cloud input. The proposed model utilizes a folding-based decoder that folds a given 2D hand skeleton into the corresponding joint coordinates. For higher estimation accuracy, folding is guided by multi-scale features, which include both global and joint-wise local features. Experimental results show that the proposed model outperforms the existing methods on three hand pose benchmark datasets with the lowest model parameter requirement. Code is available at https://github.com/cwc1260/HandFold.
Vision based human pose estimation is an non-invasive technology for Human-Computer Interaction (HCI). Direct use of the hand as an input device provides an attractive interaction method, with no need for specialized sensing equipment, such as exoske
Estimating 3D hand poses from a single RGB image is challenging because depth ambiguity leads the problem ill-posed. Training hand pose estimators with 3D hand mesh annotations and multi-view images often results in significant performance gains. How
We propose a Bayesian approximation to a deep learning architecture for 3D hand pose estimation. Through this framework, we explore and analyse the two types of uncertainties that are influenced either by data or by the learning capability. Furthermo
Estimating 3D hand pose from 2D images is a difficult, inverse problem due to the inherent scale and depth ambiguities. Current state-of-the-art methods train fully supervised deep neural networks with 3D ground-truth data. However, acquiring 3D anno
3D hand pose estimation based on RGB images has been studied for a long time. Most of the studies, however, have performed frame-by-frame estimation based on independent static images. In this paper, we attempt to not only consider the appearance of