ترغب بنشر مسار تعليمي؟ اضغط هنا

SeqHAND:RGB-Sequence-Based 3D Hand Pose and Shape Estimation

119   0   0.0 ( 0 )
 نشر من قبل John Yang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

3D hand pose estimation based on RGB images has been studied for a long time. Most of the studies, however, have performed frame-by-frame estimation based on independent static images. In this paper, we attempt to not only consider the appearance of a hand but incorporate the temporal movement information of a hand in motion into the learning framework for better 3D hand pose estimation performance, which leads to the necessity of a large scale dataset with sequential RGB hand images. We propose a novel method that generates a synthetic dataset that mimics natural human hand movements by re-engineering annotations of an extant static hand pose dataset into pose-flows. With the generated dataset, we train a newly proposed recurrent framework, exploiting visuo-temporal features from sequential images of synthetic hands in motion and emphasizing temporal smoothness of estimations with a temporal consistency constraint. Our novel training strategy of detaching the recurrent layer of the framework during domain finetuning from synthetic to real allows preservation of the visuo-temporal features learned from sequential synthetic hand images. Hand poses that are sequentially estimated consequently produce natural and smooth hand movements which lead to more robust estimations. We show that utilizing temporal information for 3D hand pose estimation significantly enhances general pose estimations by outperforming state-of-the-art methods in experiments on hand pose estimation benchmarks.



قيم البحث

اقرأ أيضاً

3D hand shape and pose estimation from a single depth map is a new and challenging computer vision problem with many applications. Existing methods addressing it directly regress hand meshes via 2D convolutional neural networks, which leads to artifa cts due to perspective distortions in the images. To address the limitations of the existing methods, we develop HandVoxNet++, i.e., a voxel-based deep network with 3D and graph convolutions trained in a fully supervised manner. The input to our network is a 3D voxelized-depth-map-based on the truncated signed distance function (TSDF). HandVoxNet++ relies on two hand shape representations. The first one is the 3D voxelized grid of hand shape, which does not preserve the mesh topology and which is the most accurate representation. The second representation is the hand surface that preserves the mesh topology. We combine the advantages of both representations by aligning the hand surface to the voxelized hand shape either with a new neural Graph-Convolutions-based Mesh Registration (GCN-MeshReg) or classical segment-wise Non-Rigid Gravitational Approach (NRGA++) which does not rely on training data. In extensive evaluations on three public benchmarks, i.e., SynHand5M, depth-based HANDS19 challenge and HO-3D, the proposed HandVoxNet++ achieves the state-of-the-art performance. In this journal extension of our previous approach presented at CVPR 2020, we gain 41.09% and 13.7% higher shape alignment accuracy on SynHand5M and HANDS19 datasets, respectively. Our method is ranked first on the HANDS19 challenge dataset (Task 1: Depth-Based 3D Hand Pose Estimation) at the moment of the submission of our results to the portal in August 2020.
Since the emergence of large annotated datasets, state-of-the-art hand pose estimation methods have been mostly based on discriminative learning. Recently, a hybrid approach has embedded a kinematic layer into the deep learning structure in such a wa y that the pose estimates obey the physical constraints of human hand kinematics. However, the existing approach relies on a single persons hand shape parameters, which are fixed constants. Therefore, the existing hybrid method has problems to generalize to new, unseen hands. In this work, we extend the kinematic layer to make the hand shape parameters learnable. In this way, the learnt network can generalize towards arbitrary hand shapes. Furthermore, inspired by the idea of Spatial Transformer Networks, we apply a cascade of appearance normalization networks to decrease the variance in the input data. The input images are shifted, rotated, and globally scaled to a similar appearance. The effectiveness and limitations of our proposed approach are extensively evaluated on the Hands 2017 challenge dataset and the NYU dataset.
Event camera is an emerging imaging sensor for capturing dynamics of moving objects as events, which motivates our work in estimating 3D human pose and shape from the event signals. Events, on the other hand, have their unique challenges: rather than capturing static body postures, the event signals are best at capturing local motions. This leads us to propose a two-stage deep learning approach, called EventHPE. The first-stage, FlowNet, is trained by unsupervised learning to infer optical flow from events. Both events and optical flow are closely related to human body dynamics, which are fed as input to the ShapeNet in the second stage, to estimate 3D human shapes. To mitigate the discrepancy between image-based flow (optical flow) and shape-based flow (vertices movement of human body shape), a novel flow coherence loss is introduced by exploiting the fact that both flows are originated from the identical human motion. An in-house event-based 3D human dataset is curated that comes with 3D pose and shape annotations, which is by far the largest one to our knowledge. Empirical evaluations on DHP19 dataset and our in-house dataset demonstrate the effectiveness of our approach.
3D hand shape and pose estimation from a single depth map is a new and challenging computer vision problem with many applications. The state-of-the-art methods directly regress 3D hand meshes from 2D depth images via 2D convolutional neural networks, which leads to artefacts in the estimations due to perspective distortions in the images. In contrast, we propose a novel architecture with 3D convolutions trained in a weakly-supervised manner. The input to our method is a 3D voxelized depth map, and we rely on two hand shape representations. The first one is the 3D voxelized grid of the shape which is accurate but does not preserve the mesh topology and the number of mesh vertices. The second representation is the 3D hand surface which is less accurate but does not suffer from the limitations of the first representation. We combine the advantages of these two representations by registering the hand surface to the voxelized hand shape. In the extensive experiments, the proposed approach improves over the state of the art by 47.8% on the SynHand5M dataset. Moreover, our augmentation policy for voxelized depth maps further enhances the accuracy of 3D hand pose estimation on real data. Our method produces visually more reasonable and realistic hand shapes on NYU and BigHand2.2M datasets compared to the existing approaches.
We propose a Bayesian approximation to a deep learning architecture for 3D hand pose estimation. Through this framework, we explore and analyse the two types of uncertainties that are influenced either by data or by the learning capability. Furthermo re, we draw comparisons against the standard estimator over three popular benchmarks. The first contribution lies in outperforming the baseline while in the second part we address the active learning application. We also show that with a newly proposed acquisition function, our Bayesian 3D hand pose estimator obtains lowest errors with the least amount of data. The underlying code is publicly available at https://github.com/razvancaramalau/al_bhpe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا