ﻻ يوجد ملخص باللغة العربية
Digital stiffness programmability is fulfilled with a heterogeneous mechanical metamaterial. The prototype consists of an elastomer matrix containing tessellations of diamond shaped cavities selectively confined with semi-rigid plastic beam inserts along their diagonals. Unit-cell perturbations by placing or removing each insert reshape the global constitutive relation whose lower and upper bounds corresponding to the configurations with all holes empty and all inserts in place, respectively, are significantly distant from each other thanks to a gap between the moduli of the elastomer and the inserts. Bidirectional operation is achieved by mixing insert orientations where longitudinal inserts enhance the macroscopic stiffness in compression and transverse ones tension. Arranged digital representations of such local insert states form the explicit encoding of global patterns so that systematic stiffness programming with minimal changes in mass is enabled both statically and in situ. These characteristics establish a new paradigm in actively tuning vibration isolation systems according to shifts in the resonance of base structures.
In this work we investigate the use of nanoporous carrier as drug delivery systems for hydrophobic molecules. By studying a model system made of porous silicon loaded with beta-carotene, we unveil a fundamental limitation of these carriers that is du
We study the buckling of a one fiber composite whose matrix stiffness is slightly dependent on the compressive force. We show that the equilibrium curves of the system exhibit a limit load when the induced stiffness parameter gets bigger than a thres
A range of technologies require the directed motion of nanoscale droplets on solid substrates. A way of realizing this effect is durotaxis, whereby a stiffness gradient of a substrate can induce directional motion without requiring an energy source.
In this work we characterize the configurational space of a short chain of colloidal particles as function of the range of directional and heterogeneous isotropic interactions. The individual particles forming the chain are colloids decorated with pa
Renewal-anomalous-heterogeneous files are solved. A simple file is made of Brownian hard spheres that diffuse stochastically in an effective 1D channel. Generally, Brownian files are heterogeneous: the spheres diffusion coefficients are distributed a