ترغب بنشر مسار تعليمي؟ اضغط هنا

The configurational space of colloidal patchy polymers with heterogeneous sequences

101   0   0.0 ( 0 )
 نشر من قبل Ivan Coluzza
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we characterize the configurational space of a short chain of colloidal particles as function of the range of directional and heterogeneous isotropic interactions. The individual particles forming the chain are colloids decorated with patches that act as interaction sites between them. We show, using computer simulations, that it is possible to sample the relative probability of occurrence of a structure with a sequence in the space of all possible realizations of the chain. The results presented here represent a first attempt to map the space of possible configurations that a chain of colloidal particles may adopt. Knowledge of such a space is crucial for a possible application of colloidal chains as models for designable self-assembling systems.



قيم البحث

اقرأ أيضاً

Using monomer-resolved Molecular Dynamics simulations and theoretical arguments based on the radial dependence of the osmotic pressure in the interior of a star, we systematically investigate the effective interactions between hard, colloidal particl es and star polymers in a good solvent. The relevant parameters are the size ratio q between the stars and the colloids, as well as the number of polymeric arms f (functionality) attached to the common center of the star. By covering a wide range of qs ranging from zero (star against a flat wall) up to about 0.75, we establish analytical forms for the star-colloid interaction which are in excellent agreement with simulation results. A modified expression for the star-star interaction for low functionalities, f < 10 is also introduced.
91 - Chiu Fan Lee 2017
Self-assembling, semi-flexible polymers are ubiquitous in biology and technology. However, there remain conflicting accounts of the equilibrium kinetics for such an important system. Here, by focusing on a dynamical description of a minimal model in an overdamped environment, I identify the correct kinetic scheme that describes the system at equilibrium in the limits of high bonding energy and dilute concentration.
The dynamics of a spherical chemically-powered synthetic colloidal motor that operates by a self-diffusiophoretic mechanism and has a catalytic domain of arbitrary shape is studied using both continuum theory and particle-based simulations. The motor executes active rotational motion when self-generated concentration gradients and interactions between the chemical species and colloidal motor surface break spherical symmetry. Local variations of chemical reaction rates on the motor catalytic surface with catalytic domain sizes and shapes provide such broken symmetry conditions. A continuum theoretical description of the active rotational motion is given, along with the results of particle-based simulations of the active dynamics. From these results a detailed description of the factors responsible for the active rotational dynamics can be given. Since active rotational motion often plays a significant part in the nature of the collective dynamics of many-motor systems and can be used to control motor motion in targeted cargo transport, our results should find applications beyond those considered here.
150 - Junfang Sheng , Kaifu Luo 2012
We investigate the chain conformation of ring polymers confined to a cylindrical nanochannel using both theoretical analysis and three dimensional Langevin dynamics simulations. We predict that the longitudinal size of a ring polymer scales with the chain length and the diameter of the channel in the same manner as that for linear chains based on scaling analysis and Flory-type theory. Moreover, Flory-type theory also gives the ratio of the longitudinal sizes for a ring polymer and a linear chain with identical chain length. These theoretical predictions are confirmed by numerical simulations. Finally, our simulation results show that this ratio first decreases and then saturates with increasing the chain stiffness, which has interpreted the discrepancy in experiments. Our results have biological significance.
Simple models based on isotropic interparticle attractions often fail to capture experimentally observed structures of colloidal gels formed through spinodal decomposition and subsequent arrest: the resulting gels are typically denser and less branch ed than their experimental counterparts. Here we simulate gels formed from soft particles with directional attractions (patchy particles), designed to inhibit lateral particle rearrangement after aggregation. We directly compare simulated structures with experimental colloidal gels made using soft attractive microgel particles, by employing a skeletonization method that reconstructs the 3-dimensional backbone from experiment or simulation. We show that including directional attractions with sufficient valency leads to strongly branched structures compared to isotropic models. Furthermore, combining isotropic and directional attractions provides additional control over aggregation kinetics and gel structure. Our results show that the inhibition of lateral particle rearrangements strongly affects the gel topology, and is an important effect to consider in computational models of colloidal gels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا