ﻻ يوجد ملخص باللغة العربية
Thermodynamic currents can fluctuate significantly at the nanoscale. But some currents fluctuate less than others. Hyperaccurate currents are those which fluctuate the least, in the sense that they maximize the signal-to-noise ratio (precision). In this letter we analytically determine the hyperaccurate current in the case of a quantum thermoelectric, modeled by the Landauer-Buttiker formalism.
We analyze a steady-state thermoelectric engine, whose working substance consists of two capacitively coupled quantum dots. One dot is tunnel-coupled to a hot reservoir serving as a heat source, the other one to two electrically biased reservoirs at
Thermodynamic observables of mesoscopic systems can be expressed as integrated empirical currents. Their fluctuations are bound by thermodynamic uncertainty relations. We introduce the hyperaccurate current as the integrated empirical current with th
The design, accurate preparation and manipulation of quantum states in quantum circuits are essential operational tasks at the heart of quantum technologies. Nowadays, circuits can be designed with physical parameters that can be controlled with unpr
The cavity mediated spin current between two ferrite samples has been reported by Bai et. al. [Phys. Rev. Lett. 118, 217201 (2017)]. This experiment was done in the linear regime of the interaction in the presence of external drive. In the current pa
We report on the experimental observation of thermoelectric currents in superconductor-ferromagnet tunnel junctions in high magnetic fields. The thermoelectric signals are due to a spin-dependent lifting of particle-hole symmetry, and are found to be