ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear Spin Currents

121   0   0.0 ( 0 )
 نشر من قبل Zhedong Zhang Dr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The cavity mediated spin current between two ferrite samples has been reported by Bai et. al. [Phys. Rev. Lett. 118, 217201 (2017)]. This experiment was done in the linear regime of the interaction in the presence of external drive. In the current paper we develop a theory for the spin current in the nonlinear domain where the external drive is strong so that one needs to include the Kerr nonlinearity of the ferrite materials. In this manner the nonlinear polaritons are created and one can reach both bistable and multistable behavior of the spin current. The system is driven into a far from equilibrium steady state which is determined by the details of driving field and various interactions. We present a variety of steady state results for the spin current. A spectroscopic detection of the nonlinear spin current is developed, revealing the key properties of the nonlinear polaritons. The transmission of a weak probe is used to obtain quantitative information on the multistable behavior of the spin current. The results and methods that we present are quite generic and can be used in many other contexts where cavities are used to transfer information from one system to another, e.g., two different molecular systems.



قيم البحث

اقرأ أيضاً

62 - Xiaopeng Li , Jue Nan , 2020
Chiral induced spin selectivity (CISS) describes efficient spin filtering by chiral molecules. This phenomenon has led to nanoscale manipulation of quantum spins with promising applications to spintronics and quantum computing, since its discovery ne arly two decades ago. However, its underlying mechanism still remains mysterious for the required spin-orbit interaction (SOI) strength is unexpectedly large. Here we report a multi-orbital theory for CISS, where an effective SOI emerges from spontaneous formation of electron-hole pairing caused by many-body correlation. This mechanism produces a strong SOI to the order of tens of milielectronvolts which could support the large spin polarization observed in CISS at room temperature. One central ingredient of our theory is the Wannier functions of the valence and conduction bands correspond respectively to one- and two-dimensional representation of the spatial rotation symmetry around the molecule elongation direction. The induced SOI strength is found to decrease when the band gap increases. Our theory may provide important guidance for searching other molecules with CISS effects.
Thermodynamic currents can fluctuate significantly at the nanoscale. But some currents fluctuate less than others. Hyperaccurate currents are those which fluctuate the least, in the sense that they maximize the signal-to-noise ratio (precision). In t his letter we analytically determine the hyperaccurate current in the case of a quantum thermoelectric, modeled by the Landauer-Buttiker formalism.
We present a time-dependent density-functional method able to describe the photoelectron spectrum of atoms and molecules when excited by laser pulses. This computationally feasible scheme is based on a geometrical partitioning that efficiently gives access to photoelectron spectroscopy in time-dependent density-functional calculations. By using a geometrical approach, we provide a simple description of momentum-resolved photoe- mission including multi-photon effects. The approach is validated by comparison with results in the literature and exact calculations. Furthermore, we present numerical photoelectron angular distributions for randomly oriented nitrogen molecules in a short near infrared intense laser pulse and helium-(I) angular spectra for aligned carbon monoxide and benzene.
56 - Y. Niimi , T. Matsui , H. Kambara 2004
We studied experimentally and theoretically the electronic local density of states (LDOS) near single step edges at the surface of exfoliated graphite. In scanning tunneling microscopy measurements, we observed the $(sqrt{3} times sqrt{3}) R 30^{circ }$ and honeycomb superstructures extending over 3$-$4 nm both from the zigzag and armchair edges. Calculations based on a density-functional derived non-orthogonal tight-binding model show that these superstructures can coexist if the two types of edges admix each other in real graphite step edges. Scanning tunneling spectroscopy measurements near the zigzag edge reveal a clear peak in the LDOS at an energy below the Fermi energy by 20 meV. No such a peak was observed near the armchair edge. We concluded that this peak corresponds to the edge state theoretically predicted for graphene ribbons, since a similar prominent LDOS peak due to the edge state is obtained by the first principles calculations.
The design, accurate preparation and manipulation of quantum states in quantum circuits are essential operational tasks at the heart of quantum technologies. Nowadays, circuits can be designed with physical parameters that can be controlled with unpr ecedented accuracy and flexibility. However, the generation of well-controlled current states is still a nagging bottleneck, especially when different circuit elements are integrated together. In this work, we show how machine learning can effectively address this challenge and outperform the current existing methods. To this end, we exploit deep reinforcement learning to prepare prescribed quantum current states in circuits composed of lumped elements. To highlight our method, we show how to engineer bosonic persistent currents as they are relevant in different quantum technologies as cold atoms and superconducting circuits. We demonstrate the use of deep reinforcement learning to re-discover established protocols, as well as solve configurations that are difficult to treat with other methods. With our approach, quantum current states characterised by a single winding number or entangled currents of multiple winding numbers can be prepared in a robust manner, superseding the existing protocols.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا