ﻻ يوجد ملخص باللغة العربية
The design of reliable indicators to anticipate critical transitions in complex systems is an im portant task in order to detect a coming sudden regime shift and to take action in order to either prevent it or mitigate its consequences. We present a data-driven method based on the estimation of a parameterized nonlinear stochastic differential equation that allows for a robust anticipation of critical transitions even in the presence of strong noise levels like they are present in many real world systems. Since the parameter estimation is done by a Markov Chain Monte Carlo approach we have access to credibility bands allowing for a better interpretation of the reliability of the results. By introducing a Bayesian linear segment fit it is possible to give an estimate for the time horizon in which the transition will probably occur based on the current state of information. This approach is also able to handle nonlinear time dependencies of the parameter controlling the transition. In general the method could be used as a tool for on-line analysis to detect changes in the resilience of the system and to provide information on the probability of the occurrence of a critical transition in future.
Much research effort has been devoted to developing methods for reconstructing the links of a network from dynamics of its nodes. Many current methods require the measurements of the dynamics of all the nodes be known. In real-world problems, it is c
Recent studies demonstrate that trends in indicators extracted from measured time series can indicate approaching to an impending transition. Kendalls {tau} coefficient is often used to study the trend of statistics related to the critical slowing do
In the last years, researchers have realized the difficulties of fitting power-law distributions properly. These difficulties are higher in Zipfs systems, due to the discreteness of the variables and to the existence of two representations for these systems, i.e., t
Half-lives of radionuclides span more than 50 orders of magnitude. We characterize the probability distribution of this broad-range data set at the same time that explore a method for fitting power-laws and testing goodness-of-fit. It is found that t
This article presents a derivation of analytical predictions for steady-state distributions of netto time gaps among clusters of vehicles moving inside a traffic stream. Using the thermodynamic socio-physical traffic model with short-ranged repulsion