ﻻ يوجد ملخص باللغة العربية
Half-lives of radionuclides span more than 50 orders of magnitude. We characterize the probability distribution of this broad-range data set at the same time that explore a method for fitting power-laws and testing goodness-of-fit. It is found that the procedure proposed recently by Clauset et al. [SIAM Rev. 51, 661 (2009)] does not perform well as it rejects the power-law hypothesis even for power-law synthetic data. In contrast, we establish the existence of a power-law exponent with a value around 1.1 for the half-life density, which can be explained by the sharp relationship between decay rate and released energy, for different disintegration types. For the case of alpha emission, this relationship constitutes an original mechanism of power-law generation.
$beta$-decay properties of nuclei are investigated within the relativistic nuclear energy density functional framework by varying the temperature and density, conditions relevant to the final stages of stellar evolution. Both thermal and nuclear pair
Artificial neural networks are trained by a standard backpropagation learning algorithm with regularization to model and predict the systematics of -decay of heavy and superheavy nuclei. This approach to regression is implemented in two alternative m
In the last years, researchers have realized the difficulties of fitting power-law distributions properly. These difficulties are higher in Zipfs systems, due to the discreteness of the variables and to the existence of two representations for these systems, i.e., t
The self-consistent proton-neutron quasiparticle random phase approximation approach is employed to calculate $beta$-decay half-lives of neutron-rich even-even nuclei with $8leqslant Z leqslant 30$. A newly proposed nonlinear point-coupling effective
The GERDA and Majorana experiments will search for neutrinoless double-beta decay of germanium-76 using isotopically enriched high-purity germanium detectors. Although the experiments differ in conceptual design, they share many aspects in common, an