ترغب بنشر مسار تعليمي؟ اضغط هنا

A Combinatorial Interpretation for Sequence A345973 in OEIS

215   0   0.0 ( 0 )
 نشر من قبل David Callan
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف David Callan




اسأل ChatGPT حول البحث

We give a combinatorial interpretation in terms of bicolored ordered trees for the sequence (a_n)_{n>=1}=(1, 1, 1, 2, 3, 6, 10, 20, 36, 73,... ), A345973 in OEIS, whose generating function satisfies the defining identity Sum_{n>=1}a_n x^n = x + x^2/Product_{n>=1}(1 - a_n x^n).



قيم البحث

اقرأ أيضاً

117 - David Callan 2016
We show that sequences A026737 and A111279 in The On-Line Encyclopedia of Integer Sequences are the same by giving a bijection between two classes of Grand Schroder paths.
Studying the virtual Euler characteristic of the moduli space of curves, Harer and Zagier compute the generating function $C_g(z)$ of unicellular maps of genus $g$. They furthermore identify coefficients, $kappa^{star}_{g}(n)$, which fully determine the series $C_g(z)$. The main result of this paper is a combinatorial interpretation of $kappa^{star}_{g}(n)$. We show that these enumerate a class of unicellular maps, which correspond $1$-to-$2^{2g}$ to a specific type of trees, referred to as O-trees. O-trees are a variant of the C-decorated trees introduced by Chapuy, F{e}ray and Fusy. We exhaustively enumerate the number $s_{g}(n)$ of shapes of genus $g$ with $n$ edges, which is a specific class of unicellular maps with vertex degree at least three. Furthermore we give combinatorial proofs for expressing the generating functions $C_g(z)$ and $S_g(z)$ for unicellular maps and shapes in terms of $kappa^{star}_{g}(n)$, respectively. We then prove a two term recursion for $kappa^{star}_{g}(n)$ and that for any fixed $g$, the sequence ${kappa_{g,t}}_{t=0}^g$ is log-concave, where $kappa^{star}_{g}(n)= kappa_{g,t}$, for $n=2g+t-1$.
We give a purely combinatorial proof of the Glaisher-Crofton identity which derives from the analysis of discrete structures generated by iterated second derivative. The argument illustrates utility of symbolic and generating function methodology of modern enumerative combinatorics and their applications to computational problems.
We verify the conjecture that the sixth binary partition function is equal (aside from the initial zero term) to the partial sums of the Stern-Brocot sequence.
In this paper we show how to express RNA tertiary interactions via the concepts of tangled diagrams. Tangled diagrams allow to formulate RNA base triples and pseudoknot-interactions and to control the maximum number of mutually crossing arcs. In part icular we study two subsets of tangled diagrams: 3-noncrossing tangled-diagrams with $ell$ vertices of degree two and 2-regular, 3-noncrossing partitions (i.e. without arcs of the form $(i,i+1)$). Our main result is an asymptotic formula for the number of 2-regular, 3-noncrossing partitions, denoted by $p_{3,2}(n)$, 3-noncrossing partitions over $[n]$. The asymptotic formula is derived by the analytic theory of singular difference equations due to Birkhoff-Trjitzinsky. Explicitly, we prove the formula $p_{3,2}(n+1)sim K 8^{n}n^{-7}(1+c_{1}/n+c_{2}/n^2+c_3/n^3)$ where $K,c_i$, $i=1,2,3$ are constants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا