ﻻ يوجد ملخص باللغة العربية
Studying the virtual Euler characteristic of the moduli space of curves, Harer and Zagier compute the generating function $C_g(z)$ of unicellular maps of genus $g$. They furthermore identify coefficients, $kappa^{star}_{g}(n)$, which fully determine the series $C_g(z)$. The main result of this paper is a combinatorial interpretation of $kappa^{star}_{g}(n)$. We show that these enumerate a class of unicellular maps, which correspond $1$-to-$2^{2g}$ to a specific type of trees, referred to as O-trees. O-trees are a variant of the C-decorated trees introduced by Chapuy, F{e}ray and Fusy. We exhaustively enumerate the number $s_{g}(n)$ of shapes of genus $g$ with $n$ edges, which is a specific class of unicellular maps with vertex degree at least three. Furthermore we give combinatorial proofs for expressing the generating functions $C_g(z)$ and $S_g(z)$ for unicellular maps and shapes in terms of $kappa^{star}_{g}(n)$, respectively. We then prove a two term recursion for $kappa^{star}_{g}(n)$ and that for any fixed $g$, the sequence ${kappa_{g,t}}_{t=0}^g$ is log-concave, where $kappa^{star}_{g}(n)= kappa_{g,t}$, for $n=2g+t-1$.
We give a combinatorial interpretation in terms of bicolored ordered trees for the sequence (a_n)_{n>=1}=(1, 1, 1, 2, 3, 6, 10, 20, 36, 73,... ), A345973 in OEIS, whose generating function satisfies the defining identity Sum_{n>=1}a_n x^n = x + x^2/Product_{n>=1}(1 - a_n x^n).
We give a purely combinatorial proof of the Glaisher-Crofton identity which derives from the analysis of discrete structures generated by iterated second derivative. The argument illustrates utility of symbolic and generating function methodology of
We give a combinatorial proof that the product of a Schubert polynomial by a Schur polynomial is a nonnegative sum of Schubert polynomials. Our proof uses Assafs theory of dual equivalence to show that a quasisymmetric function of Bergeron and Sottil
We present a decomposition of the generalized binomial coefficients associated with Jack polynomials into two factors: a stem, which is described explicitly in terms of hooks of the indexing partitions, and a leaf, which inherits various recurrence p
The Lucas sequence is a sequence of polynomials in s, and t defined recursively by {0}=0, {1}=1, and {n}=s{n-1}+t{n-2} for n >= 2. On specialization of s and t one can recover the Fibonacci numbers, the nonnegative integers, and the q-integers [n]_q.