ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on scalar field dark matter from twin co-located power-recycled Michelson interferometers

69   0   0.0 ( 0 )
 نشر من قبل Lorenzo Aiello
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The origin and the physical properties of dark matter remain unknown to date and their discovery is one of the most challenging topics in contemporary physics. One possible, prominent option is scalar field dark matter. In particular, low-mass (sub-eV) scalar field dark matter may induce apparent oscillations of fundamental constants, resulting in corresponding oscillations of the size and the index of refraction of solids. Laser interferometers are highly sensitive to changes in the size and index of refraction of the main beamsplitter. Using the data of the Fermilab Holometer instrument, which consists of twin co-located 40-m arm length power-recycled interferometers built to test quantum gravity theories, we investigate the possible existence of scalar field dark matter candidates in the mass range between 4.1$cdot$10$^{-9}$ eV and 10$^{-7}$ eV. We set new upper limits for the coupling parameters of scalar field dark matter, improving on limits from previous direct searches by up to one order of magnitude.



قيم البحث

اقرأ أيضاً

The nature of dark matter remains unknown to date; several candidate particles are being considered in a dynamically changing research landscape. Scalar field dark matter is a prominent option that is being explored with precision instruments such as atomic clocks and optical cavities. Here we report on the first direct search for scalar field dark matter utilising a gravitational-wave detector operating beyond the quantum shot-noise limit. We set new upper limits for the coupling constants of scalar field dark matter as a function of its mass by excluding the presence of signals that would be produced through the direct coupling of this dark matter to the beamsplitter of the GEO,600 interferometer. The new constraints improve upon bounds from previous direct searches by more than six orders of magnitude and are more stringent than limits obtained in tests of the equivalence principle by up to four orders of magnitude. Our work demonstrates that scalar field dark matter can be probed or constrained with direct searches using gravitational-wave detectors and highlights the potential of quantum-enhanced interferometry for dark matter detection.
This paper aims to put constraints on the parameters of the Scalar Field Dark Matter (SFDM) model, when dark matter is described by a free real scalar field filling the whole Universe, plus a cosmological constant term. By using a compilation of 51 $ H(z)$ data and 1048 Supernovae data from Panteon, a lower limit for the mass of the scalar field was obtained, $m geq 5.1times 10^{-34} $eV and $H_0=69.5^{+2.0}_{-2.1}text{ km s}^{-1}text{Mpc}^{-1}$. Also, the present dark matter density parameter was obtained as $Omega_phi = 0.230^{+0.033}_{-0.031}$ at $2sigma$ confidence level. The results are in good agreement to standard model of cosmology, showing that SFDM model is viable in describing the dark matter content of the universe.
62 - Jhonny A. A. Ruiz 2020
The warm dark matter (WDM) can be described by simple and useful model called reduced relativistic gas (RRG). In this work, it is analytically constructed the scalar field actions minimally and non-minimally coupled to gravity, which are equivalent t o RRG in the sense they produce the same cosmological solutions for the conformal factor of the metric. In particular, we construct the scalar theory which corresponds to the model of ultra-relativistic ideal gas of spinless particles possessing conformal symmetry. Finally, the possibility of supplementing our scalar field model with a dynamical dark energy in the form of a running cosmological constant (RCC) is also considered.
Measurements are reported of the cross-correlation of spectra of differential position signals from the Fermilab Holometer, a pair of co-located 39 m long, high power Michelson interferometers with flat, broadband frequency response in the MHz range. The instrument obtains sensitivity to high frequency correlated signals far exceeding any previous measurement in a broad frequency band extending beyond the 3.8 MHz inverse light crossing time of the apparatus. The dominant but uncorrelated shot noise is averaged down over $2times 10^8$ independent spectral measurements with 381 Hz frequency resolution to obtain $2.1times 10^{-20} mathrm{m}/sqrt{mathrm{Hz}}$ sensitivity to stationary signals. For signal bandwidths $Delta f > 11$ kHz, the sensitivity to strain $h$ or shear power spectral density of classical or exotic origin surpasses a milestone $PSD_{delta h} < t_p$ where $t_p= 5.39times 10^{-44}/mathrm{Hz}$ is the Planck time.
159 - S. Basak , A. Ganguly , K. Haris 2021
If a significant fraction of dark matter is in the form of compact objects, they will cause microlensing effects in the gravitational wave (GW) signals observable by LIGO and Virgo. From the non-observation of microlensing signatures in the binary bl ack hole events from the first two observing runs and the first half of the third observing run, we constrain the fraction of compact dark matter in the mass range $10^2-10^5~{M_odot}$ to be less than $simeq 50-80%$ (details depend on the assumed source population properties and the Bayesian priors). These modest constraints will be significantly improved in the next few years with the expected detection of thousands of binary black hole events, providing a new avenue to probe the nature of dark matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا