ﻻ يوجد ملخص باللغة العربية
The origin and the physical properties of dark matter remain unknown to date and their discovery is one of the most challenging topics in contemporary physics. One possible, prominent option is scalar field dark matter. In particular, low-mass (sub-eV) scalar field dark matter may induce apparent oscillations of fundamental constants, resulting in corresponding oscillations of the size and the index of refraction of solids. Laser interferometers are highly sensitive to changes in the size and index of refraction of the main beamsplitter. Using the data of the Fermilab Holometer instrument, which consists of twin co-located 40-m arm length power-recycled interferometers built to test quantum gravity theories, we investigate the possible existence of scalar field dark matter candidates in the mass range between 4.1$cdot$10$^{-9}$ eV and 10$^{-7}$ eV. We set new upper limits for the coupling parameters of scalar field dark matter, improving on limits from previous direct searches by up to one order of magnitude.
The nature of dark matter remains unknown to date; several candidate particles are being considered in a dynamically changing research landscape. Scalar field dark matter is a prominent option that is being explored with precision instruments such as
This paper aims to put constraints on the parameters of the Scalar Field Dark Matter (SFDM) model, when dark matter is described by a free real scalar field filling the whole Universe, plus a cosmological constant term. By using a compilation of 51 $
The warm dark matter (WDM) can be described by simple and useful model called reduced relativistic gas (RRG). In this work, it is analytically constructed the scalar field actions minimally and non-minimally coupled to gravity, which are equivalent t
Measurements are reported of the cross-correlation of spectra of differential position signals from the Fermilab Holometer, a pair of co-located 39 m long, high power Michelson interferometers with flat, broadband frequency response in the MHz range.
If a significant fraction of dark matter is in the form of compact objects, they will cause microlensing effects in the gravitational wave (GW) signals observable by LIGO and Virgo. From the non-observation of microlensing signatures in the binary bl