ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological Constraints on Scalar Field Dark Matter

89   0   0.0 ( 0 )
 نشر من قبل Anderson Almeida Escobal
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper aims to put constraints on the parameters of the Scalar Field Dark Matter (SFDM) model, when dark matter is described by a free real scalar field filling the whole Universe, plus a cosmological constant term. By using a compilation of 51 $H(z)$ data and 1048 Supernovae data from Panteon, a lower limit for the mass of the scalar field was obtained, $m geq 5.1times 10^{-34} $eV and $H_0=69.5^{+2.0}_{-2.1}text{ km s}^{-1}text{Mpc}^{-1}$. Also, the present dark matter density parameter was obtained as $Omega_phi = 0.230^{+0.033}_{-0.031}$ at $2sigma$ confidence level. The results are in good agreement to standard model of cosmology, showing that SFDM model is viable in describing the dark matter content of the universe.



قيم البحث

اقرأ أيضاً

We derive non-relativistic equations of motion for the formation of cosmological structure in a Scalar Field Dark Matter (SFDM) model corresponding to a complex scalar field endowed with a quadratic scalar potential. Starting with the full equations of motion written in the Newtonian gauge of scalar perturbations, we separate out the fields involved into relativistic and non-relativistic parts, and find the equations of motion for the latter that can be used to build up the full solution. One important assumption will also be that the SFDM field is in the regime of fast oscillations, under which its behavior is exactly that of cold dark matter. The resultant equations are quite similar to the Schrodinger-Poisson system of Newtonian boson stars plus relativistic leftovers. We exploit that similarity to show how to simulate, with minimum numerical effort, the formation of cosmological structure in SFDM models and others alike, and ultimately prove their viability as complete dark matter models.
107 - Tommi Tenkanen 2019
Dark matter (DM) may have its origin in a pre-Big Bang epoch, the cosmic inflation. Here, we consider for the first time a broad class of scenarios where a massive free scalar field unavoidably reaches an equilibrium between its classical and quantum dynamics in a characteristic time scale during inflation and sources the DM density. The study gives the abundance and perturbation spectrum of any DM component sourced by the scalar field. We show that this class of scenarios generically predicts enhanced structure formation, allowing one to test models where DM interacts with matter only gravitationally.
We reconsider the dynamics of the Universe in the presence of interactions in the cosmological dark sector. A class of interacting models is introduced via a real function $fleft(rright)$ of the ratio $r$ between the energy densities of the (pressure less) cold dark matter (CDM) and dark energy (DE). The subclass of models for which the ratio $r$ depends only on the scale factor is shown to be equivalent to unified models of the dark sector, i.e. models for which the CDM and DE components can be combined in order to form a unified dark fluid. For specific choices of the function $fleft(rright)$ we recover several models already studied in the literature. We analyse various special cases of this type of interacting models using a suitably modified version of the CLASS code combined with MontePython in order to constrain the parameter space with the data from supernova of type SNe Ia (JLA), the Hubble constant $H_{0}$, cosmic chronometers (CC), baryon acoustic oscilations (BAO) and data from the Planck satellite (Planck TT). Our analysis shows that even if data from the late Universe ($H_{0}$, SNe Ia and CC) indicate an interaction in the dark sector, the data related to the early Universe (BAO and Planck TT) constrain this interaction substantially, in particular for cases in which the background dynamics is strongly affected.
As we are entering the era of precision cosmology, it is necessary to count on accurate cosmological predictions from any proposed model of dark matter. In this paper we present a novel approach to the cosmological evolution of scalar fields that eas es their analytic and numerical analysis at the background and at the linear order of perturbations. We apply the method to a scalar field endowed with a quadratic potential and revisit its properties as dark matter. Some of the results known in the literature are recovered, and a better understanding of the physical properties of the model is provided. It is shown that the Jeans wavenumber defined as $k_J = a sqrt{mH}$ is directly related to the suppression of linear perturbations at wavenumbers $k>k_J$. We also discuss some semi-analytical results that are well satisfied by the full numerical solutions obtained from an amended version of the CMB code CLASS. Finally we draw some of the implications that this new treatment of the equations of motion may have in the prediction for cosmological observables.
It is widely accepted that dark matter contributes about a quarter of the critical mass-energy density in our Universe. The nature of dark matter is currently unknown, with the mass of possible constituents spanning nearly one hundred orders of magni tude. The ultralight scalar field dark matter, consisting of extremely light bosons with $m sim 10^{-22}$ eV and often called fuzzy dark matter, provides intriguing solutions to some challenges at sub-Galactic scales for the standard cold dark matter model. As shown by Khmelnitsky and Rubakov, such a scalar field in the Galaxy would produce an oscillating gravitational potential with nanohertz frequencies, resulting in periodic variations in the times of arrival of radio pulses from pulsars. The Parkes Pulsar Timing Array (PPTA) has been monitoring 20 millisecond pulsars at two to three weeks intervals for more than a decade. In addition to the detection of nanohertz gravitational waves, PPTA offers the opportunity for direct searches for fuzzy dark matter in an astrophysically feasible range of masses. We analyze the latest PPTA data set which includes timing observations for 26 pulsars made between 2004 and 2016. We perform a search in this data set for evidence of ultralight dark matter in the Galaxy using Bayesian and Frequentist methods. No statistically significant detection has been made. We therefore place upper limits on the local dark matter density. Our limits, improving on previous searches by a factor of two to five, constrain the dark matter density of ultralight bosons with $m leq 10^{-23}$ eV to be below $6,text{GeV},text{cm}^{-3}$ with 95% confidence in the Earth neighborhood. Finally, we discuss the prospect of probing the astrophysically favored mass range $m gtrsim 10^{-22}$ eV with next-generation pulsar timing facilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا