ﻻ يوجد ملخص باللغة العربية
Structural analysis is a method for verifying equation-oriented models in the design of industrial systems. Existing structural analysis methods need flattening the hierarchical models into an equation system for analysis. However, the large-scale equations in complex models make the structural analysis difficult. Aimed to address the issue, this study proposes a hierarchical structural analysis method by exploring the relationship between the singularities of the hierarchical equation-oriented model and its components. This method obtains the singularity of a hierarchical equation-oriented model by analyzing the dummy model constructed with the parts from the decomposing results of its components. Based on this, the structural singularity of a complex model can be obtained by layer-by-layer analysis according to their natural hierarchy. The hierarchical structural analysis method can reduce the equation scale in each analysis and achieve efficient structural analysis of very complex models. This method can be adaptively applied to nonlinear algebraic and differential-algebraic equation models. The main algorithms, application cases, and comparison with the existing methods are present in the paper. Complexity analysis results show the enhanced efficiency of the proposed method in structural analysis of complex equation-oriented models. As compared with the existing methods, the time complexity of the proposed method is improved significantly.
The finite cell method (FCM) belongs to the class of immersed boundary methods, and combines the fictitious domain approach with high-order approximation, adaptive integration and weak imposition of unfitted Dirichlet boundary conditions. For the ana
Factors driving success and failure in CS1 are the subject of much study but less so for CS2. This paper investigates the transition from CS1 to CS2 in search of leading indicators of success in CS2. Both CS1 and CS2 at the University of North Caroli
Complex systems can be modelled at various levels of detail. Ideally, causal models of the same system should be consistent with one another in the sense that they agree in their predictions of the effects of interventions. We formalise this notion o
Complex systems and their underlying convoluted networks are ubiquitous, all we need is an eye for them. They pose problems of organized complexity which cannot be approached with a reductionist method. Complexity science and its emergent sister netw
This study presents a meshless-based local reanalysis (MLR) method. The purpose of this study is to extend reanalysis methods to the Kriging interpolation meshless method due to its high efficiency. In this study, two reanalysis methods: combined app