ترغب بنشر مسار تعليمي؟ اضغط هنا

A Meshless-based Local Reanalysis Method for Structural Analysis

100   0   0.0 ( 0 )
 نشر من قبل Zhenxing Cheng
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This study presents a meshless-based local reanalysis (MLR) method. The purpose of this study is to extend reanalysis methods to the Kriging interpolation meshless method due to its high efficiency. In this study, two reanalysis methods: combined approximations CA) and indirect factorization updating (IFU) methods are utilized. Considering the computational cost of meshless methods, the reanalysis method improves the efficiency of the full meshless method significantly. Compared with finite element method (FEM)-based reanalysis methods, the main superiority of meshless-based reanalysis method is to break the limitation of mesh connection. The meshless-based reanalysis is much easier to obtain the stiffness matrix even for solving the mesh distortion problems. However, compared with the FEM-based reanalysis method, the critical challenge is to use much more nodes in the influence domain due to high order interpolation. Therefore, a local reanalysis method which only needs to calculate the local stiffness matrix in the influence domain is suggested to improve the efficiency further. Several typical numerical examples are tested and the performance of the suggested method is verified.



قيم البحث

اقرأ أيضاً

86 - Zhi Zeng , Fulei Ma 2020
This paper presents an efficient gradient projection-based method for structural topological optimization problems characterized by a nonlinear objective function which is minimized over a feasible region defined by bilateral bounds and a single line ar equality constraint. The specialty of the constraints type, as well as heuristic engineering experiences are exploited to improve the scaling scheme, projection, and searching step. In detail, gradient clipping and a modified projection of searching direction under certain condition are utilized to facilitate the efficiency of the proposed method. Besides, an analytical solution is proposed to approximate this projection with negligible computation and memory costs. Furthermore, the calculation of searching steps is largely simplified. Benchmark problems, including the MBB, the force inverter mechanism, and the 3D cantilever beam are used to validate the effectiveness of the method. The proposed method is implemented in MATLAB which is open-sourced for educational usage.
Alignment-free sequence analysis approaches provide important alternatives over multiple sequence alignment (MSA) in biological sequence analysis because alignment-free approaches have low computation complexity and are not dependent on high level of sequence identity, however, most of the existing alignment-free methods do not employ true full information content of sequences and thus can not accurately reveal similarities and differences among DNA sequences. We present a novel alignment-free computational method for sequence analysis based on Ramanujan-Fourier transform (RFT), in which complete information of DNA sequences is retained. We represent DNA sequences as four binary indicator sequences and apply RFT on the indicator sequences to convert them into frequency domain. The Euclidean distance of the complete RFT coefficients of DNA sequences are used as similarity measure. To address the different lengths in Euclidean space of RFT coefficients, we pad zeros to short DNA binary sequences so that the binary sequences equal the longest length in the comparison sequence data. Thus, the DNA sequences are compared in the same dimensional frequency space without information loss. We demonstrate the usefulness of the proposed method by presenting experimental results on hierarchical clustering of genes and genomes. The proposed method opens a new channel to biological sequence analysis, classification, and structural module identification.
56 - Zhiwei He 2020
In this paper, based on the idea of self-adjusting steepness based schemes[5], a two-dimensional calculation method of steepness parameter is proposed, and thus a two-dimensional self-adjusting steepness based limiter is constructed. With the applica tion of such limiter to the over-intersection based remapping framework, a low dissipation remapping method has been proposed that can be applied to the existing ALE method.
This paper describes the model updating procedure implemented in NOSA-ITACA, a finite-element code for the structural analysis of masonry constructions of historical interest. The procedure, aimed at matching experimental frequencies and mode shapes, allows fine-tuning calculation of the free parameters in the model. The numerical method is briefly described, and some issues related to its robustness are addressed. The procedure is then applied to a simple case study and two historical structures in Tuscany, the Clock Tower in Lucca and the Maddalena bridge in Borgo a Mozzano.
We introduce an FFT-based solver for the combinatorial continuous maximum flow discretization applied to computing the minimum cut through heterogeneous microstructures. Recently, computational methods were introduced for computing the effective crac k energy of periodic and random media. These were based on the continuous minimum cut-maximum flow duality of G. Strang, and made use of discretizations based on trigonometric polynomials and finite elements. For maximum flow problems on graphs, node-based discretization methods avoid metrication artifacts associated to edge-based discretizations. We discretize the minimum cut problem on heterogeneous microstructures by the combinatorial continuous maximum flow discretization introduced by Couprie et al. Furthermore, we introduce an associated FFT-based ADMM solver and provide several adaptive strategies for choosing numerical parameters. We demonstrate the salient features of the proposed approach on problems of industrial scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا