ﻻ يوجد ملخص باللغة العربية
Cerium diantimonide (CeSb$_2$) is one of a family of rare earth based magnetic materials that exhibit metamagnetism, enabling control of the magnetic ground state through an applied magnetic field. At low temperatures, CeSb$_2$ hosts a rich phase diagram with multiple magnetically ordered phases for many of which the order parameter is only poorly understood. In this paper, we report a study of its metamagnetic properties by Scanning Tunneling Microscopy (STM) and magnetization measurements. We use STM measurements to characterize the sample magnetostriction with sub-picometer resolution from magnetic field and temperature sweeps. This allows us to directly assess the bulk phase diagram as a function of field and temperature and relate spectroscopic features from tunneling spectroscopy to bulk phases. Our magnetostriction and magnetisation measurements indicate that the low temperature ground state at zero field is ferrimagnetic. Quasiparticle interference mapping shows evidence for a reconstruction of the electronic structure close to the Fermi energy upon entering the magnetically ordered phase.
Detailed magnetization, specific heat, and $^7$Li nuclear magnetic resonance (NMR) measurements on single crystals of the hyperhoneycomb Kitaev magnet $beta$-Li$_2$IrO$_3$ are reported. At high temperatures, {cred anisotropy of the magnetization is r
We have studied a nearly stoichiometric insulating Y$_{0.97(2)}$Cr$_{0.98(2)}$O$_{3.00(2)}$ single crystal by performing measurements of magnetization, heat capacity, and neutron diffraction. Albeit that the YCrO$_3$ compound behaviors like a soft fe
We explore the field-temperature phase diagram of the XY pyrochlore antiferromagnet Er$_2$Ti$_2$O$_7$, by means of magnetization and neutron diffraction experiments. Depending on the field strength and direction relative to the high symmetry cubic di
We report linear thermal expansion and magnetostriction measurements for CeRu$_2$Si$_2$ in magnetic fields up to 52.6 mT and at temperatures down to 1 mK. At high temperatures, this compound showed Landau-Fermi-liquid behavior: The linear thermal exp
Structural phase transitions in $f$-electron materials have attracted sustained attention both for practical and basic science reasons, including that they offer an environment to directly investigate relationships between structure and the $f$-state