ترغب بنشر مسار تعليمي؟ اضغط هنا

Novel Quantum Criticality in CeRu$_2$Si$_2$ near Absolute Zero Observed by Thermal Expansion and Magnetostriction

211   0   0.0 ( 0 )
 نشر من قبل Satoshi Abe
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report linear thermal expansion and magnetostriction measurements for CeRu$_2$Si$_2$ in magnetic fields up to 52.6 mT and at temperatures down to 1 mK. At high temperatures, this compound showed Landau-Fermi-liquid behavior: The linear thermal expansion coefficient and the magnetostriction coefficient were proportional to the temperature and magnetic field, respectively. In contrast, a pronounced non-Fermi-liquid effect was found below 50 mK. The negative contribution of thermal expansion and magnetostriction suggests the existence of an additional quantum critical point.



قيم البحث

اقرأ أيضاً

We studied the physical properties of two Kondo-lattice compounds, CeRu$_2$As$_2$ and CeIr$_2$As$_2$, by a combination of electric transport, magnetic and thermodynamic measurements. They are of ThCr$_2$Si$_2$-type and CaBe$_2$Ge$_2$-type crystalline structures, respectively. CeRu$_2$As$_2$ shows localized long-range antiferromagnetic ordering below $T_N$=4.3 K, with a moderate electronic Sommerfeld coefficient $gamma_0$=35 mJ/mol$cdot$K$^2$. A field-induced metamagnetic transition is observed near 2 T below $T_N$. Magnetic susceptibility measurements on aligned CeRu$_2$As$_2$ powders suggest that it has an easy axis and that the cerium moments align uniaxially along $mathbf{c}$ axis. In contrast, CeIr$_2$As$_2$ is a magnetically nonordered heavy-fermion metal with enhanced $gamma_0$$>$300 mJ/mol$cdot$K$^2$. The initial onset Kondo temperatures of the two compounds are respectively 6 K and 30 K. We discuss the role of the crystal structure to the strength of Kondo coupling. This work provides two new dense Kondo-lattice materials for further investigations on electronic correlation, quantum criticality and heavy-electron effects.
60 - D. Wulferding , H. Kim , I. Yang 2017
In search of novel, improved materials for magnetic data storage and spintronic devices, compounds that allow a tailoring of magnetic domain shapes and sizes are essential. Good candidates are materials with intrinsic anisotropies or competing intera ctions, as they are prone to host various domain phases that can be easily and precisely selected by external tuning parameters such as temperature and magnetic field. Here, we utilize vector magnetic fields to visualize directly the magnetic anisotropy in the uniaxial ferromagnet CeRu$_2$Ga$_2$B. We demonstrate a feasible control both globally and locally of domain shapes and sizes by the external field as well as a smooth transition from single stripe to bubble domains, which opens the door to future applications based on magnetic domain tailoring.
121 - N. Su , F.-Y. Li , Y. Y. Jiao 2019
Critical phenomenon at the phase transition reveals the universal and long-distance properties of the criticality. We study the ferromagnetic criticality of the pyrochlore magnet Lu$_2$V$_2$O$_7$ at the ferromagnetic transition ${T_text{c}approx 70, text{K}}$ from the isotherms of magnetization $M(H)$ via an iteration process and the Kouvel-Fisher method. The critical exponents associated with the transition are determined as ${beta = 0.32(1)}$, ${gamma = 1.41(1)}$, and ${delta = 5.38}$. The validity of these critical exponents is further verified by scaling all the $M(H)$ data in the vicinity of $T_text{c}$ onto two universal curves in the plot of $M/|varepsilon|^beta$ versus $H/|varepsilon|^{beta+gamma}$, where ${varepsilon = T/T_text{c} -1}$. The obtained $beta$ and $gamma$ values show asymmetric behaviors on the ${T < T_text{c}}$ and the ${T > T_text{c}}$ sides, and are consistent with the predicted values of 3D Ising and cubic universality classes, respectively. This makes Lu$_2$V$_2$O$_7$ a rare example in which the critical behaviors associated with a ferromagnetic transition belong to different universality classes. We describe the observed criticality from the Ginzburg-Landau theory with the quartic cubic anisotropy that microscopically originates from the anti-symmetric Dzyaloshinskii-Moriya interaction as revealed by recent magnon thermal Hall effect and theoretical investigations.
In this paper the low-temperature properties of two isostructural canonical heavy-fermion compounds are contrasted with regards to the interplay between antiferromagnetic (AF) quantum criticality and superconductivity. For CeCu$_2$Si$_2$, fully-gappe d d-wave superconductivity forms in the vicinity of an itinerant three-dimensional heavy-fermion spin-density-wave (SDW) quantum critical point (QCP). Inelastic neutron scattering results highlight that both quantum critical SDW fluctuations as well as Mott-type fluctuations of local magnetic moments contribute to the formation of Cooper pairs in CeCu$_2$Si$_2$. In YbRh$_2$Si$_2$, superconductivity appears to be suppressed at $Tgtrsim~10$ mK by AF order ($T_N$ = 70 mK). Ultra-low temperature measurements reveal a hybrid order between nuclear and 4f-electronic spins, which is dominated by the Yb-derived nuclear spins, to develop at $T_A$ slightly above 2 mK. The hybrid order turns out to strongly compete with the primary 4f-electronic order and to push the material towards its QCP. Apparently, this paves the way for heavy-fermion superconductivity to form at $T_c$ = 2 mK. Like the pressure - induced QCP in CeRhIn$_5$, the magnetic field - induced one in YbRh$_2$Si$_2$ is of the local Kondo-destroying variety which corresponds to a Mott-type transition at zero temperature. Therefore, these materials form the link between the large family of about fifty low-$T$ unconventional heavy - fermion superconductors and other families of unconventional superconductors with higher $T_c$s, notably the doped Mott insulators of the cuprates, organic charge-transfer salts and some of the Fe-based superconductors. Our study suggests that heavy-fermion superconductivity near an AF QCP is a robust phenomenon.
The quantum dimer magnet (QDM) is the canonical example of quantum magnetism. The QDM state consists of entangled nearest-neighbor spin dimers and often exhibits a field-induced triplon Bose-Einstein condensate (BEC) phase. We report on a new QDM in the strongly spin-orbit coupled, distorted honeycomb-lattice material Yb$_2$Si$_2$O$_7$. Our single crystal neutron scattering, specific heat, and ultrasound velocity measurements reveal a gapped singlet ground state at zero field with sharp, dispersive excitations. We find a field-induced magnetically ordered phase reminiscent of a BEC phase, with exceptionally low critical fields of $H_{c1} sim 0.4$ T and $H_{c2} sim 1.4$ T. Using inelastic neutron scattering in an applied magnetic field we observe a Goldstone mode (gapless to within $delta E$ = 0.037 meV) that persists throughout the entire field-induced magnetically ordered phase, suggestive of the spontaneous breaking of U(1) symmetry expected for a triplon BEC. However, in contrast to other well-known cases of this phase, the high-field ($mu$$_0$$Hgeq1.2$T) part of the phase diagram in Yb$_2$Si$_2$O$_7$ is interrupted by an unusual regime signaled by a change in the field dependence of the ultrasound velocity and magnetization, as well as the disappearance of a sharp anomaly in the specific heat. These measurements raise the question of how anisotropy in strongly spin-orbit coupled materials modifies the field induced phases of QDMs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا