ﻻ يوجد ملخص باللغة العربية
In this article, we explore the relationship between the existence of closed timelike curves and energy conditions that occur in the Kerr-Newman spacetime. To quantify the dependence, we define a correlation index between energy conditions and closed timelike curves. Based on the inputs from Hawkings chronology protection conjecture, we analyze two popular variants of Kerr-Newman spacetime: Non-commutative and Rastall Kerr-Newman spacetimes. These two models provide complementary scenarios that aid in analyzing Hawkings statements regarding the correlation of closed timelike curves and energy conditions from a local and a global perspective. We report the results outlining the possible role played by violations of energy conditions in eliminating the closed timelike curves in two contrasting situations, namely in spacetimes with and without curvature singularities.
We present an idealised model of gravitational collapse, describing a collapsing rotating cylindrical shell of null dust in flat space, with the metric of a spinning cosmic string as the exterior. We find that the shell bounces before closed timelike
I give a historical survey of the discussions about the existence of closed timelike curves in general relativistic models of the universe, opening the physical possibility of time travel in the past, as first recognized by K. Godel in his rotating u
The linear stability of closed timelike geodesics (CTGs) is analyzed in two spacetimes with cylindrical sources, an infinite rotating dust cylinder, and a cylindrical cloud of static cosmic strings with a central spinning string. We also study the ex
Closed timelike curves are among the most controversial features of modern physics. As legitimate solutions to Einsteins field equations, they allow for time travel, which instinctively seems paradoxical. However, in the quantum regime these paradoxe
Energy conditions for matter fields are comprehensively investigated in arbitrary $n(ge 3)$ dimensions without specifying future and past directions locally. We classify an energy-momentum tensor into $n$-dimensional counterparts of the Hawking-Ellis