ﻻ يوجد ملخص باللغة العربية
Energy conditions for matter fields are comprehensively investigated in arbitrary $n(ge 3)$ dimensions without specifying future and past directions locally. We classify an energy-momentum tensor into $n$-dimensional counterparts of the Hawking-Ellis type I to IV, where type III is defined by a more useful form than those adopted by Hawking and Ellis and other authors to identify the type-III energy-momentum tensor in a given spacetime. We also provide necessary and sufficient conditions for types I and II as inequalities for the orthonormal components of the energy-momentum tensor in a canonical form and show that types III and IV violate all the standard energy conditions. Lastly, we study energy conditions for a set of physically motivated matter fields.
A complete theory of gravity impels us to go beyond Einsteins General Relativity. One promising approach lies in a new class of teleparallel theory of gravity named $f(Q)$, where the nonmetricity $Q$ is responsible for the gravitational interaction.
The recently proposed $f(Q, T)$ gravity (Xu et al. Eur. Phys. J. C textbf{79} (2019) 708) is an extension of the symmetric teleparallel gravity. The gravitational action $L$ is given by an arbitrary function $f$ of the non-metricity $Q$ and the trace
We show analytically that the vacuum electromagnetic stress-energy tensor outside a ball with constant dielectric constant and permeability always obeys the weak, null, dominant, and strong energy conditions. There are still no known examples in quan
We compute the gravitational wave energy $E_{rm rad}$ radiated in head-on collisions of equal-mass, nonspinning black holes in up to $D=8$ dimensional asymptotically flat spacetimes for boost velocities $v$ up to about $90,%$ of the speed of light. W
We are living in a golden age for experimental cosmology. New experiments with high accuracy precision are been used to constrain proposals of several theories of gravity, as it has been never done before. However, important roles to constrain new th