ﻻ يوجد ملخص باللغة العربية
In this article we consider the linear stability of the two-dimensional flow induced by the linear stretching of a surface in the streamwise direction. The basic flow is a rare example of an exact analytical solution of the Navier-Stokes equations. Using results from a large Reynolds number asymptotic study and a highly accurate spectral numerical method we show that this flow is linearly unstable to disturbances in the form of Tollmien-Schlichting waves. Previous studies have shown this flow is linearly stable. However, our results show that this is only true for G{o}rtler-type disturbances.
In homogeneous isotropic turbulence, slender rods are known to align with the Lagrangian stretching direction. However, how the degree of alignment depends on the aspect ratio of the rod is not understood. Moreover, many flows of practical interest a
In this chapter, we analyze the steady-state microscale fluid--structure interaction (FSI) between a generalized Newtonian fluid and a hyperelastic tube. Physiological flows, especially in hemodynamics, serve as primary examples of such FSI phenomena
We revisit the somewhat classical problem of the linear stability of a rigidly rotating liquid column in this communication. Although literature pertaining to this problem dates back to 1959, the relation between inviscid and viscous stability criter
We study fluid-structure interactions (FSIs) in a long and shallow microchannel, conveying a non-Newtonian fluid, at steady state. The microchannel has a linearly elastic and compliant top wall, while its three other walls are rigid. The fluid flowin
Understanding ventilation strategy of a supercavity is important for designing high-speed underwater vehicles wherein an artificial gas pocket is created behind a flow separation device for drag reduction. Our study investigates the effect of flow un