ﻻ يوجد ملخص باللغة العربية
We study fluid-structure interactions (FSIs) in a long and shallow microchannel, conveying a non-Newtonian fluid, at steady state. The microchannel has a linearly elastic and compliant top wall, while its three other walls are rigid. The fluid flowing inside the microchannel has a shear-dependent viscosity described by the power-law rheological model. We employ lubrication theory to solve for the flow problem inside the long and shallow microchannel. For the structural problem, we employ two plate theories, namely Kirchhoff-Love theory of thin plates and Reissner-Mindlin first-order shear deformation theory. The hydrodynamic pressure couples the flow and deformation problem by acting as a distributed load onto the soft top wall. Within our perturbative (lubrication theory) approach, we determine the relationship between flow rate and the pressure gradient, which is a nonlinear first-order ordinary differential equation for the pressure. From the solution of this differential equation, all other quantities of interest in non-Newtonian microchannel FSIs follow. Through illustrative examples, we show the effect of FSI coupling strength and the plate thickness on the pressure drop across the microchannel. Through direct numerical simulation of non-Newtonian microchannel FSIs using commercial computational engineering tools, we benchmark the prediction from our mathematical prediction for the flow rate-pressure drop relation and the structural deformation profile of the top wall. In doing so, we also establish the limits of applicability of our perturbative theory.
We develop a one-dimensional model for the unsteady fluid--structure interaction (FSI) between a soft-walled microchannel and viscous fluid flow within it. A beam equation, which accounts for both transverse bending rigidity and nonlinear axial tensi
Motivated by the complex rheological behaviors observed in small/micro scale blood vessels, such as the Fahraeus effect, plasma-skimming, shear-thinning, etc., we develop a non-linear suspension model for blood. The viscosity is assumed to depend on
A flow vessel with an elastic wall can deform significantly due to viscous fluid flow within it, even at vanishing Reynolds number (no fluid inertia). Deformation leads to an enhancement of throughput due to the change in cross-sectional area. The la
In this work we consider theoretically the problem of a Newtonian droplet moving in an otherwise quiescent infinite viscoelastic fluid under the influence of an externally applied temperature gradient. The outer fluid is modelled by the Oldroyd-B equ
Miniature heaters are immersed in flows of quantum fluid and the efficiency of heat transfer is monitored versus velocity, superfluid fraction and time. The fluid is $^4$He helium with a superfluid fraction varied from 71% down to 0% and an imposed v