ﻻ يوجد ملخص باللغة العربية
One-way quantum computing is a promising candidate for fault-tolerant quantum computing. Here, we propose new protocols to realize a deterministic one-way CNOT gate and one-way $X$-rotations on quantum-computing platforms. By applying a delayed-choice scheme, we overcome a limit of most currently available quantum computers, which are unable to implement further operations on measured qubits or operations conditioned on measurement results from other qubits. Moreover, we decrease the error rate of the one-way logic gates, compared to the original protocol using local operations and classical communication (LOCC). In addition, we apply our deterministic one-way CNOT gate in the Deutsch-Jozsa algorithm to show the feasibility of our proposal. We demonstrate all these one-way gates and algorithms by running experiments on the cloud quantum-computing platform IBM Quantum Experience.
One-way quantum computing is an important and novel approach to quantum computation. By exploiting the existing particle-particle interactions, we report the first experimental realization of the complete process of deterministic one-way quantum Deut
We describe an experimental effort designing and deploying error-robust single-qubit operations using a cloud-based quantum computer and analog-layer programming access. We design numerically-optimized pulses that implement target operations and exhi
We propose a novel one-way quantum repeater architecture based on photonic tree-cluster states. Encoding a qubit in a photonic tree-cluster protects the information from transmission loss and enables long-range quantum communication through a chain o
Parallel operations in conventional computing have proven to be an essential tool for efficient and practical computation, and the story is not different for quantum computing. Indeed, there exists a large body of works that study advantages of paral
Efficiently entangling pairs of qubits is essential to fully harness the power of quantum computing. Here, we devise an exact protocol that simultaneously entangles arbitrary pairs of qubits on a trapped-ion quantum computer. The protocol requires cl