ﻻ يوجد ملخص باللغة العربية
We investigated spin wave (SW) propagation and emission in thin film systems with strong interfacial Dzyaloshinskii-Moriya interaction (DMI) utilizing micromagnetic simulation. The effect of DMI on SW propagation is analogous to the flow of magnetic medium leading to the spin Doppler effect, and a spin-polarized current can enhance or suppress it. It is demonstrated that, for a Doppler velocity exceeding a critical value, a shock-wave-like emission of SWs with a cone-shape emerges from a magnetically irregular point as the cone apex. The cone angle is quantitatively determined by the DMI-induced Doppler velocity. Combining the interfacial DMI and the spin-polarized current, a constant SW emission by a static source is demonstrated, which provides a promising route to efficiently generate SWs with tunable frequency.
Topological defects such as magnetic solitons, vortices, Bloch lines, and skyrmions have started to play an important role in modern magnetism because of their extraordinary stability, which can be exploited in the production of memory devices. Recen
Spin waves can probe the Dzyaloshinskii-Moriya interaction (DMI) which gives rise to topological spin textures, such as skyrmions. However, the DMI has not yet been reported in yttrium iron garnet (YIG) with arguably the lowest damping for spin waves
Chiral spin textures at the interface between ferromagnetic and heavy nonmagnetic metals, such as Neel-type domain walls and skyrmions, have been studied intensively because of their great potential for future nanomagnetic devices. The Dyzaloshinskii
We show a method to control magnetic interfacial effects in multilayers with Dzyaloshinskii-Moriya interaction (DMI) using helium (He$^{+}$) ion irradiation. We compare results from SQUID magnetometry, ferromagnetic resonance as well as Brillouin lig
The interface between a ferromagnet (FM) or antiferromagnet (AFM) and a heavy metal (HM) results in an antisymmetric exchange interaction known as the interfacial Dzyaloshinskii-Moriya interaction (iDMI) which favors non-collinear spin configurations