ﻻ يوجد ملخص باللغة العربية
The low energy effective potential for the model with a light scalar and a heavy scalar is derived. We perform the path integration for both heavy and light scalars and derive the low energy effective potential in terms of only the light scalar. The effective potential is independent of the renormalization scale approximately. By setting the renormalization scale equal to the mass of the heavy scalar, one finds the corrections with the logarithm of the ratio of the two scalar masses. The large logarithm is summed with the renormalization group (RG) and the RG improved effective potential is derived. The improved effective potential includes the one-loop correction of the heavy scalar and the leading logarithmic corrections due to the light scalar. We discuss the implication of the corrections to the parameters of the mass squared dimension as well as the cosmological constants.
To understand the phase transition phenomena, information theoretical approaches can pick up some important properties of the phenomena based on the probability distribution. In this paper, we show information theoretical aspects of the 3-dimensional
The scaling behavior of semileptonic form-factors in Heavy to Light transitions is studied in the Heavy Quark Effective Theory. In the case of $Hrightarrow pi e u$ it is shown that the same scaling violations affecting the heavy meson decay constant will be present in the semileptonic form-factors.
I develop an Effective Field Theory (EFT) framework to compute jet substructure observables for heavy ion collision experiments. As an illustration, I consider dijet events that accompany the formation of a weakly coupled Quark Gluon Plasma(QGP) medi
We perform a comprehensive analysis of the Minimal Supersymmetric Standard Model (MSSM) in the scenario where the scalar partners of the fermions and the Higgs particles (except for the Standard-Model-like one) are assumed to be very heavy and are re
We have explored the prospect of probing a neutral scalar ($H$) produced in association with one $b$-quark and decaying either invisibly or into a pair of $b$-quarks at the LHC with centre of mass energy $sqrt s = 14$ TeV. In this regard, we adopt an