ﻻ يوجد ملخص باللغة العربية
We perform a comprehensive analysis of the Minimal Supersymmetric Standard Model (MSSM) in the scenario where the scalar partners of the fermions and the Higgs particles (except for the Standard-Model-like one) are assumed to be very heavy and are removed from the low-energy spectrum. We first summarize our determination of the mass spectrum, in which we include the one-loop radiative corrections and resum to all orders the leading logarithms of the large scalar masses, and describe the implementation of these features in the FORTRAN code SuSpect which calculates the masses and couplings of the MSSM particles. We then study in detail the phenomenology of the model in scenarios where the gaugino mass parameters are non-universal at the GUT scale, which leads to very interesting features that are not present in the widely studied case of universal gaugino mass parameters. We discuss the constraints from collider searches and high-precision measurements, the cosmological constraints on the relic abundance of the neutralino candidate for the Dark Matter in the Universe - where new and interesting channels for neutralino annihilation appear - and the gluino lifetime. We then analyze, in the case of non-universal gaugino masses, the decays of the Higgs boson (in particular decays into and contributions of SUSY particles), of charginos and neutralinos (in particular decays into Higgs bosons and photons) and of gluinos, and highlight the differences from the case of universal gaugino masses.
We have explored the prospect of probing a neutral scalar ($H$) produced in association with one $b$-quark and decaying either invisibly or into a pair of $b$-quarks at the LHC with centre of mass energy $sqrt s = 14$ TeV. In this regard, we adopt an
The low energy effective potential for the model with a light scalar and a heavy scalar is derived. We perform the path integration for both heavy and light scalars and derive the low energy effective potential in terms of only the light scalar. The
We present several advances in the effective field theory calculation of the Higgs mass in MSSM scenarios with heavy superparticles. In particular, we compute the dominant two-loop threshold corrections to the quartic Higgs coupling for generic value
The proposed DarkQuest beam dump experiment, a modest upgrade to the existing SeaQuest/SpinQuest experiment, has great potential for uncovering new physics within a dark sector. We explore both the near-term and long-term prospects for observing two
We perform a parameter scan of the phenomenological Minimal Supersymmetric Standard Model (pMSSM) with eight parameters taking into account the experimental Higgs boson results from Run I of the LHC and further low-energy observables. We investigate