ترغب بنشر مسار تعليمي؟ اضغط هنا

Small-scale Clumping at Recombination and the Hubble Tension

139   0   0.0 ( 0 )
 نشر من قبل Michael Rashkovetskyi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite the success of the standard $Lambda$CDM model of cosmology, recent data improvements have made tensions emerge between low- and high-redshift observables, most importantly in determinations of the Hubble constant $H_0$ and the (rescaled) clustering amplitude $S_8$. The high-redshift data, from the cosmic microwave background (CMB), crucially relies on recombination physics for its interpretation. Here we study how small-scale baryon inhomogeneities (i.e., clumping) can affect recombination and consider whether they can relieve both the $H_0$ and $S_8$ tensions. Such small-scale clumping, which may be caused by primordial magnetic fields or baryon isocurvature below kpc scales, enhances the recombination rate even when averaged over larger scales, shifting recombination to earlier times. We introduce a flexible clumping model, parametrized via three spatial zones with free densities and volume fractions, and use it to study the impact of clumping on CMB observables. We find that increasing $H_0$ decreases both $Omega_m$ and $S_8$, which alleviates the $S_8$ tension. On the other hand, the shift in $Omega_m$ is disfavored by the low-$z$ baryon-acoustic-oscillations measurements. We find that the clumping parameters that can change the CMB sound horizon enough to explain the $H_0$ tension also alter the damping tail, so they are disfavored by current {it Planck} 2018 data. We test how the CMB damping-tail information rules out changes to recombination by first removing $ell>1000$ multipoles in {it Planck} data, where we find that clumping could resolve the $H_0$ tension. Furthermore, we make predictions for future CMB experiments, as their improved damping-tail precision can better constrain departures from standard recombination. Both the {it Simons Observatory} and CMB-S4 will provide decisive evidence for or against clumping as a resolution to the $H_0$ tension.



قيم البحث

اقرأ أيضاً

Small-scale inhomogeneities in the baryon density around recombination have been proposed as a solution to the tension between local and global determinations of the Hubble constant. These baryon clumping models make distinct predictions for the cosm ic microwave background anisotropy power spectra on small angular scales. We use recent data from the Atacama Cosmology Telescope to test these predictions. No evidence for baryon clumping is found, assuming a range of parameterizations for time-independent baryon density probability distribution functions. The inferred Hubble constant remains in significant tension with the SH0ES measurement.
The current cosmological probes have provided a fantastic confirmation of the standard $Lambda$ Cold Dark Matter cosmological model, that has been constrained with unprecedented accuracy. However, with the increase of the experimental sensitivity a f ew statistically significant tensions between different independent cosmological datasets emerged. While these tensions can be in portion the result of systematic errors, the persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the need for new physics. In this Letter of Interest we will focus on the $4.4sigma$ tension between the Planck estimate of the Hubble constant $H_0$ and the SH0ES collaboration measurements. After showing the $H_0$ evaluations made from different teams using different methods and geometric calibrations, we will list a few interesting new physics models that could solve this tension and discuss how the next decade experiments will be crucial.
We study the covariance in the angular power spectrum estimates of CMB fluctuations when the primordial fluctuations are non-Gaussian. The non-Gaussian covariance comes from a nonzero connected four-point correlation function -- or the trispectrum in Fourier space -- and can be large when long-wavelength (super-CMB) modes are strongly coupled to short-wavelength modes. The effect of such non-Gaussian covariance can be modeled through additional freedom in the theoretical CMB angular power spectrum and can lead to different inferred values of the standard cosmological parameters relative to those in $Lambda$CDM. Taking the collapsed limit of the primordial trispectrum in the quasi-single field inflation model as an example, we study how the six standard $Lambda$CDM parameters shift when two additional parameters describing the trispectrum are allowed. The reduced statistical significance of the Hubble tension in the extended model allows us to combine the {it Planck} temperature data and the type Ia supernovae data from Panstarrs with the distance-ladder measurement of the Hubble constant. This combination of data shows strong evidence for a primordial trispectrum-induced non-Gaussian covariance, with a likelihood improvement of $Delta chi^2 approx -15$ (with two additional parameters) relative to $Lambda$CDM.
Local measurements of the Hubble parameter are increasingly in tension with the value inferred from a $Lambda$CDM fit to the cosmic microwave background (CMB) data. In this paper, we construct scenarios in which evolving scalar fields significantly e ase this tension by adding energy to the Universe around recombination in a narrow redshift window. We identify solutions of $V propto phi^{2 n}$ with simple asymptotic behavior, both oscillatory (rocking) and rolling. These are the first solutions of this kind in which the field evolution and fluctuations are consistently implemented using the equations of motion. Our findings differ qualitatively from those of the existing literature, which rely upon a coarse-grained fluid description. Combining CMB data with low-redshift measurements, the best fit model has $n=2$ and increases the allowed value of $H_0$ from 69.2 km/s/Mpc in $Lambda$CDM to 72.3 km/s/Mpc at $2sigma$. Future measurements of the late-time amplitude of matter fluctuations and of the reionization history could help distinguish these models from competing solutions.
Standard cosmology predicts that prior to matter-radiation equality about 41% of the energy density was in free-streaming neutrinos. In many beyond Standard Model scenarios, however, the amount and free-streaming nature of this component is modified. For example, this occurs in models with new neutrino self-interactions or an additional dark sector with interacting light particles. We consider several extensions of the standard cosmology that include a non-free-streaming radiation component as motivated by such particle physics models and use the final Planck data release to constrain them. This release contains significant improvements in the polarization likelihood which plays an important role in distinguishing free-streaming from interacting radiation species. Fixing the total amount of energy in radiation to match the expectation from standard neutrino decoupling we find that the fraction of free-streaming radiation must be $f_mathrm{fs} > 0.8$ at 95% CL (combining temperature, polarization and baryon acoustic oscillation data). Allowing for arbitrary contributions of free-streaming and interacting radiation, the effective number of new non-free-streaming degrees of freedom is constrained to be $N_mathrm{fld} < 0.6$ at 95% CL. Cosmologies with additional radiation are also known to ease the discrepancy between the local measurement and CMB inference of the current expansion rate $H_0$. We show that including a non-free-streaming radiation component allows for a larger amount of total energy density in radiation, leading to a mild improvement of the fit to cosmological data compared to previously discussed models with only a free-streaming component.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا