ﻻ يوجد ملخص باللغة العربية
We study the covariance in the angular power spectrum estimates of CMB fluctuations when the primordial fluctuations are non-Gaussian. The non-Gaussian covariance comes from a nonzero connected four-point correlation function -- or the trispectrum in Fourier space -- and can be large when long-wavelength (super-CMB) modes are strongly coupled to short-wavelength modes. The effect of such non-Gaussian covariance can be modeled through additional freedom in the theoretical CMB angular power spectrum and can lead to different inferred values of the standard cosmological parameters relative to those in $Lambda$CDM. Taking the collapsed limit of the primordial trispectrum in the quasi-single field inflation model as an example, we study how the six standard $Lambda$CDM parameters shift when two additional parameters describing the trispectrum are allowed. The reduced statistical significance of the Hubble tension in the extended model allows us to combine the {it Planck} temperature data and the type Ia supernovae data from Panstarrs with the distance-ladder measurement of the Hubble constant. This combination of data shows strong evidence for a primordial trispectrum-induced non-Gaussian covariance, with a likelihood improvement of $Delta chi^2 approx -15$ (with two additional parameters) relative to $Lambda$CDM.
The standard cosmological paradigm narrates a reassuring story of a universe currently dominated by an enigmatic dark energy component. Disquietingly, its universal explaining power has recently been challenged by, above all, the $sim4sigma$ tension
Braneworld models with induced gravity exhibit phantom-like behaviour of the effective equation of state of dark energy. They can, therefore, naturally accommodate higher values of $H_0$, preferred by recent local measurements, while satisfying the C
The current cosmological probes have provided a fantastic confirmation of the standard $Lambda$ Cold Dark Matter cosmological model, that has been constrained with unprecedented accuracy. However, with the increase of the experimental sensitivity a f
Despite the success of the standard $Lambda$CDM model of cosmology, recent data improvements have made tensions emerge between low- and high-redshift observables, most importantly in determinations of the Hubble constant $H_0$ and the (rescaled) clus
It is shown, from the two independent approaches of McCrea-Milne and of Zeldovich, that one can fully recover the set equations corresponding to the relativistic equations of the expanding universe of Friedmann-Lemaitre-Robertson-Walker geometry. Alt