ترغب بنشر مسار تعليمي؟ اضغط هنا

Super-CMB fluctuations and the Hubble tension

63   0   0.0 ( 0 )
 نشر من قبل Saroj Adhikari
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the covariance in the angular power spectrum estimates of CMB fluctuations when the primordial fluctuations are non-Gaussian. The non-Gaussian covariance comes from a nonzero connected four-point correlation function -- or the trispectrum in Fourier space -- and can be large when long-wavelength (super-CMB) modes are strongly coupled to short-wavelength modes. The effect of such non-Gaussian covariance can be modeled through additional freedom in the theoretical CMB angular power spectrum and can lead to different inferred values of the standard cosmological parameters relative to those in $Lambda$CDM. Taking the collapsed limit of the primordial trispectrum in the quasi-single field inflation model as an example, we study how the six standard $Lambda$CDM parameters shift when two additional parameters describing the trispectrum are allowed. The reduced statistical significance of the Hubble tension in the extended model allows us to combine the {it Planck} temperature data and the type Ia supernovae data from Panstarrs with the distance-ladder measurement of the Hubble constant. This combination of data shows strong evidence for a primordial trispectrum-induced non-Gaussian covariance, with a likelihood improvement of $Delta chi^2 approx -15$ (with two additional parameters) relative to $Lambda$CDM.



قيم البحث

اقرأ أيضاً

The standard cosmological paradigm narrates a reassuring story of a universe currently dominated by an enigmatic dark energy component. Disquietingly, its universal explaining power has recently been challenged by, above all, the $sim4sigma$ tension in the values of the Hubble constant. Another, less studied anomaly is the repeated observation of integrated Sachs-Wolfe imprints $sim5times$ stronger than expected in the $Lambda$CDM model from R>100 $Mpc/h$ super-structures. Here we show that the inhomogeneous AvERA model of emerging curvature is capable of telling a plausible albeit radically different story that explains both observational anomalies without dark energy. We demonstrate that while stacked imprints of R>100 $Mpc/h$ supervoids in cosmic microwave background temperature maps can discriminate between the AvERA and $Lambda$CDM models, their characteristic differences may remain hidden using alternative void definitions and stacking methodologies. Testing the extremes, we then also show that the CMB Cold Spot can plausibly be explained in the AvERA model as an ISW imprint. The coldest spot in the AvERA map is aligned with multiple low-$z$ supervoids with R>100 $Mpc/h$ and central underdensity $delta_{0}approx-0.3$, resembling the observed large-scale galaxy density field in the Cold Spot area. We hence conclude that the anomalous imprint of supervoids may well be the canary in the coal mine, and existing observational evidence for dark energy should be re-interpreted to further test alternative models.
Braneworld models with induced gravity exhibit phantom-like behaviour of the effective equation of state of dark energy. They can, therefore, naturally accommodate higher values of $H_0$, preferred by recent local measurements, while satisfying the C MB constraints. We test the background evolution in such phantom braneworld scenarios with the current observational datasets. We find that the phantom braneworld prefers a higher value of $H_0$ even without the R19 prior, thereby providing a much better fit to the local measurements. Although this braneworld model cannot fully satisfy all combinations of cosmological observables, among existing dark energy candidates the phantom brane provides one of the most compelling explanations of cosmic evolution.
The current cosmological probes have provided a fantastic confirmation of the standard $Lambda$ Cold Dark Matter cosmological model, that has been constrained with unprecedented accuracy. However, with the increase of the experimental sensitivity a f ew statistically significant tensions between different independent cosmological datasets emerged. While these tensions can be in portion the result of systematic errors, the persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the need for new physics. In this Letter of Interest we will focus on the $4.4sigma$ tension between the Planck estimate of the Hubble constant $H_0$ and the SH0ES collaboration measurements. After showing the $H_0$ evaluations made from different teams using different methods and geometric calibrations, we will list a few interesting new physics models that could solve this tension and discuss how the next decade experiments will be crucial.
Despite the success of the standard $Lambda$CDM model of cosmology, recent data improvements have made tensions emerge between low- and high-redshift observables, most importantly in determinations of the Hubble constant $H_0$ and the (rescaled) clus tering amplitude $S_8$. The high-redshift data, from the cosmic microwave background (CMB), crucially relies on recombination physics for its interpretation. Here we study how small-scale baryon inhomogeneities (i.e., clumping) can affect recombination and consider whether they can relieve both the $H_0$ and $S_8$ tensions. Such small-scale clumping, which may be caused by primordial magnetic fields or baryon isocurvature below kpc scales, enhances the recombination rate even when averaged over larger scales, shifting recombination to earlier times. We introduce a flexible clumping model, parametrized via three spatial zones with free densities and volume fractions, and use it to study the impact of clumping on CMB observables. We find that increasing $H_0$ decreases both $Omega_m$ and $S_8$, which alleviates the $S_8$ tension. On the other hand, the shift in $Omega_m$ is disfavored by the low-$z$ baryon-acoustic-oscillations measurements. We find that the clumping parameters that can change the CMB sound horizon enough to explain the $H_0$ tension also alter the damping tail, so they are disfavored by current {it Planck} 2018 data. We test how the CMB damping-tail information rules out changes to recombination by first removing $ell>1000$ multipoles in {it Planck} data, where we find that clumping could resolve the $H_0$ tension. Furthermore, we make predictions for future CMB experiments, as their improved damping-tail precision can better constrain departures from standard recombination. Both the {it Simons Observatory} and CMB-S4 will provide decisive evidence for or against clumping as a resolution to the $H_0$ tension.
It is shown, from the two independent approaches of McCrea-Milne and of Zeldovich, that one can fully recover the set equations corresponding to the relativistic equations of the expanding universe of Friedmann-Lemaitre-Robertson-Walker geometry. Alt hough similar, the Newtonian and relativistic set of equations have a principal difference in the content and hence define two flows, local and global ones, thus naturally exposing the Hubble tension at the presence of the cosmological constant Lambda. From this, we obtain absolute constraints on the lower and upper values for the local Hubble parameter, sqrt{Lambda c^2/3} simeq 56.2$ and sqrt{Lambda c^2} simeq 97.3 (km/sec Mpc^{-1}), respectively. The link to the so-called maximum force--tension issue in cosmological models is revealed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا