ﻻ يوجد ملخص باللغة العربية
We consider the hypothesis that quantum mechanics is not fundamental, but instead emerges from a theory with less computational power, such as classical mechanics. This hypothesis makes the prediction that quantum computers will not be capable of sufficiently complex quantum computations. Utilizing this prediction, we outline a proposal to test for such a breakdown of quantum mechanics using near-term noisy intermediate-scale quantum (NISQ) computers. Our procedure involves simulating a non-Clifford random circuit, followed by its inverse, and then checking that the resulting state is the same as the initial state. We show that quantum mechanics predicts that the fidelity of this procedure decays exponentially with circuit depth (due to noise in NISQ computers). However, if quantum mechanics emerges from a theory with significantly less computational power, then we expect the fidelity to decay significantly more rapidly than the quantum mechanics prediction for sufficiently deep circuits, which is the experimental signature that we propose to search for. Useful experiments can be performed with 80 qubits and gate infidelity $10^{-3}$, while highly informative experiments should require only 1000 qubits and gate infidelity $10^{-5}$.
Symmetry is a unifying concept in physics. In quantum information and beyond, it is known that quantum states possessing symmetry are not useful for certain information-processing tasks. For example, states that commute with a Hamiltonian realizing a
The combination of machine learning and quantum computing has emerged as a promising approach for addressing previously untenable problems. Reservoir computing is an efficient learning paradigm that utilizes nonlinear dynamical systems for temporal i
Quantum simulation represents the most promising quantum application to demonstrate quantum advantage on near-term noisy intermediate-scale quantum (NISQ) computers, yet available quantum simulation algorithms are prone to errors and thus difficult t
Trapped ions (TI) are a leading candidate for building Noisy Intermediate-Scale Quantum (NISQ) hardware. TI qubits have fundamental advantages over other technologies such as superconducting qubits, including high qubit quality, coherence and connect
We provide and experimentally demonstrate an accreditation protocol that upper-bounds the variation distance between noisy and noiseless probability distributions of the outputs of arbitrary quantum computations. We accredit the outputs of twenty-fou