ترغب بنشر مسار تعليمي؟ اضغط هنا

Architecting Noisy Intermediate-Scale Trapped Ion Quantum Computers

121   0   0.0 ( 0 )
 نشر من قبل Prakash Murali
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Trapped ions (TI) are a leading candidate for building Noisy Intermediate-Scale Quantum (NISQ) hardware. TI qubits have fundamental advantages over other technologies such as superconducting qubits, including high qubit quality, coherence and connectivity. However, current TI systems are small in size, with 5-20 qubits and typically use a single trap architecture which has fundamental scalability limitations. To progress towards the next major milestone of 50-100 qubits, a modular architecture termed the Quantum Charge Coupled Device (QCCD) has been proposed. In a QCCD-based TI device, small traps are connected through ion shuttling. While the basic hardware components for such devices have been demonstrated, building a 50-100 qubit system is challenging because of a wide range of design possibilities for trap sizing, communication topology and gate implementations and the need to match diverse application resource requirements. Towards realizing QCCD systems with 50-100 qubits, we perform an extensive architectural study evaluating the key design choices of trap sizing, communication topology and operation implementation methods. We built a design toolflow which takes a QCCD architectures parameters as input, along with a set of applications and realistic hardware performance models. Our toolflow maps the applications onto the target device and simulates their execution to compute metrics such as application run time, reliability and device noise rates. Using six applications and several hardware design points, we show that trap sizing and communication topology choices can impact application reliability by up to three orders of magnitude. Microarchitectural gate implementation choices influence reliability by another order of magnitude. From these studies, we provide concrete recommendations to tune these choices to achieve highly reliable and performant application executions.



قيم البحث

اقرأ أيضاً

181 - Gushu Li , Yufei Ding , Yuan Xie 2019
To bridge the gap between limited hardware access and the huge demand for experiments for Noisy Intermediate-Scale Quantum (NISQ) computing system study, a simulator which can capture the modeling of both the quantum processor and its classical contr ol system to realize early-stage evaluation and design space exploration, is naturally invoked but still missing. This paper presents SANQ, a Simulation framework for Architecting NISQ computing system. SANQ consists of two components, 1) an optimized noisy quantum computing (QC) simulator with flexible error modeling accelerated by eliminating redundant computation, and 2) an architectural simulation infrastructure to construct behavior models for evaluating the control systems. SANQ is validated with existing NISQ quantum processor and control systems to ensure simulation accuracy. It can capture the variance on the QC device and simulate the timing behavior precisely (<1% and 10% error for various real control systems). Several potential applications are proposed to show that SANQ could benefit the future design of NISQ compiler, architecture, etc.
Crosstalk is a major source of noise in Noisy Intermediate-Scale Quantum (NISQ) systems and is a fundamental challenge for hardware design. When multiple instructions are executed in parallel, crosstalk between the instructions can corrupt the quantu m state and lead to incorrect program execution. Our goal is to mitigate the application impact of crosstalk noise through software techniques. This requires (i) accurate characterization of hardware crosstalk, and (ii) intelligent instruction scheduling to serialize the affected operations. Since crosstalk characterization is computationally expensive, we develop optimizations which reduce the characterization overhead. On three 20-qubit IBMQ systems, we demonstrate two orders of magnitude reduction in characterization time (compute time on the QC device) compared to all-pairs crosstalk measurements. Informed by these characterization, we develop a scheduler that judiciously serializes high crosstalk instructions balancing the need to mitigate crosstalk and exponential decoherence errors from serialization. On real-system runs on three IBMQ systems, our scheduler improves the error rate of application circuits by up to 5.6x, compared to the IBM instruction scheduler and offers near-optimal crosstalk mitigation in practice. In a broader picture, the difficulty of mitigating crosstalk has recently driven QC vendors to move towards sparser qubit connectivity or disabling nearby operations entirely in hardware, which can be detrimental to performance. Our work makes the case for software mitigation of crosstalk errors.
Trapped-ion quantum information processors store information in atomic ions maintained in position in free space via electric fields. Quantum logic is enacted via manipulation of the ions internal and shared motional quantum states using optical and microwave signals. While trapped ions show great promise for quantum-enhanced computation, sensing, and communication, materials research is needed to design traps that allow for improved performance by means of integration of system components, including optics and electronics for ion-qubit control, while minimizing the near-ubiquitous electric-field noise produced by trap-electrode surfaces. In this review, we consider the materials requirements for such integrated systems, with a focus on problems that hinder current progress toward practical quantum computation. We give suggestions for how materials scientists and trapped-ion technologists can work together to develop materials-based integration and noise-mitigation strategies to enable the next generation of trapped-ion quantum computers.
Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.
196 - Kevin Slagle 2021
We consider the hypothesis that quantum mechanics is not fundamental, but instead emerges from a theory with less computational power, such as classical mechanics. This hypothesis makes the prediction that quantum computers will not be capable of suf ficiently complex quantum computations. Utilizing this prediction, we outline a proposal to test for such a breakdown of quantum mechanics using near-term noisy intermediate-scale quantum (NISQ) computers. Our procedure involves simulating a non-Clifford random circuit, followed by its inverse, and then checking that the resulting state is the same as the initial state. We show that quantum mechanics predicts that the fidelity of this procedure decays exponentially with circuit depth (due to noise in NISQ computers). However, if quantum mechanics emerges from a theory with significantly less computational power, then we expect the fidelity to decay significantly more rapidly than the quantum mechanics prediction for sufficiently deep circuits, which is the experimental signature that we propose to search for. Useful experiments can be performed with 80 qubits and gate infidelity $10^{-3}$, while highly informative experiments should require only 1000 qubits and gate infidelity $10^{-5}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا