ترغب بنشر مسار تعليمي؟ اضغط هنا

Aperiodic Ising model on the Bethe lattice: Exact results

220   0   0.0 ( 0 )
 نشر من قبل Loic Turban
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Igloi




اسأل ChatGPT حول البحث

We consider the Ising model on the Bethe lattice with aperiodic modulation of the couplings, which has been studied numerically in Phys. Rev. E 77, 041113 (2008). Here we present a relevance-irrelevance criterion and solve the critical behavior exactly for marginal aperiodic sequences. We present analytical formulae for the continuously varying critical exponents and discuss a relationship with the (surface) critical behavior of the aperiodic quantum Ising chain.



قيم البحث

اقرأ أيضاً

We investigate the role of a transverse field on the Ising square antiferromagnet with first-($J_1$) and second-($J_2$) neighbor interactions. Using a cluster mean-field approach, we provide a telltale characterization of the frustration effects on t he phase boundaries and entropy accumulation process emerging from the interplay between quantum and thermal fluctuations. We found that the paramagnetic (PM) and antiferromagnetic phases are separated by continuous phase transitions. On the other hand, continuous and discontinuous phase transitions, as well as tricriticality, are observed in the phase boundaries between PM and superantiferromagnetic phases. A rich scenario arises when a discontinuous phase transition occurs in the classical limit while quantum fluctuations recover criticality. We also find that the entropy accumulation process predicted to occur at temperatures close to the quantum critical point can be enhanced by frustration. Our results provide a description for the phase boundaries and entropy behavior that can help to identify the ratio $J_2/J_1$ in possible experimental realizations of the quantum $J_1$-$J_2$ Ising antiferromagnet.
In this paper and its sequel, we construct topologically invariant defects in two-dimensional classical lattice models and quantum spin chains. We show how defect lines commute with the transfer matrix/Hamiltonian when they obey the defect commutatio n relations, cousins of the Yang-Baxter equation. These relations and their solutions can be extended to allow defect lines to branch and fuse, again with properties depending only on topology. In this part I, we focus on the simplest example, the Ising model. We define lattice spin-flip and duality defects and their branching, and prove they are topological. One useful consequence is a simple implementation of Kramers-Wannier duality on the torus and higher genus surfaces by using the fusion of duality defects. We use these topological defects to do simple calculations that yield exact properties of the conformal field theory describing the continuum limit. For example, the shift in momentum quantization with duality-twisted boundary conditions yields the conformal spin 1/16 of the chiral spin field. Even more strikingly, we derive the modular transformation matrices explicitly and exactly.
117 - Jozef Genzor , Andrej Gendiar , 2015
Phase transition of the Ising model is investigated on a planar lattice that has a fractal structure. On the lattice, the number of bonds that cross the border of a finite area is doubled when the linear size of the area is extended by a factor of fo ur. The free energy and the spontaneous magnetization of the system are obtained by means of the higher-order tensor renormalization group method. The system exhibits the order-disorder phase transition, where the critical indices are different from that of the square-lattice Ising model. An exponential decay is observed in the density matrix spectrum even at the critical point. It is possible to interpret that the system is less entangled because of the fractal geometry.
161 - M. Schmidt , G. L. Kohlrausch , 2021
Recent results for the Ising model with first ($J_1$) and second ($J_2$) neighbour interactions on the body-centered cubic (bcc) lattice suggest that this model can host signatures of strong frustration, including Schottky anomalies and residual entr opy, as well as, a spin-liquid-like phase [E. Jurv{c}iv{s}inova and M. Jurv{c}iv{s}in, Phys. Rev. B, 101 214443 (2020)]. Motivated by these findings, we investigate phase transitions and thermodynamics of this model using a cluster mean-field approach. In this lattice, tuning $g=J_2/J_1$ leads to a ground-state transition between antiferromagnetic (AF) and superantiferromagnetic (SAF) phases at the frustration maximum $g=2/3$. Although the ordering temperature is reduced as $g to 2/3$, our findings suggest the absence of any Schottky anomaly and residual entropy, in good agreement with Monte Carlo simulations. We also find a direct transition between AF and SAF phases, ruling out the presence of the spin-liquid-like state. Furthermore, the cluster mean-field outcomes support a scenario with only continuous phase transitions between the paramagnetic state and the low-temperature long-range orders. Therefore, our results indicate the absence of strong frustration effects in the thermodynamics and in the nature of phase transitions, which can be ascribed to the higher dimensionality of the bcc lattice.
The mixed spin-1/2 and spin-1 Ising model on the Bethe lattice with both uniaxial as well as biaxial single-ion anisotropy terms is exactly solved by combining star-triangle and triangle-star mapping transformations with exact recursion relations. Ma gnetic properties (magnetization, phase diagrams and compensation phenomenon) are investigated in detail. The particular attention is focused on the effect of uniaxial and biaxial single-ion anisotropies that basically influence the magnetic behavior of the spin-1 atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا