ﻻ يوجد ملخص باللغة العربية
Variational quantum algorithms that are used for quantum machine learning rely on the ability to automatically differentiate parametrized quantum circuits with respect to underlying parameters. Here, we propose the rules for differentiating quantum circuits (unitaries) with arbitrary generators. Unlike the standard parameter shift rule valid for unitaries generated by operators with spectra limited to at most two unique eigenvalues (represented by involutory and idempotent operators), our approach also works for generators with a generic non-degenerate spectrum. Based on a spectral decomposition, we derive a simple recipe that allows explicit derivative evaluation. The derivative corresponds to the weighted sum of measured expectations for circuits with shifted parameters. The number of function evaluations is equal to the number of unique positive non-zero spectral gaps (eigenvalue differences) for the generator. We apply the approach to relevant examples of two-qubit gates, among others showing that the fSim gate can be differentiated using four measurements. Additionally, we present generalized differentiation rules for the case of Pauli string generators, based on distinct shifts (here named as the triangulation approach), and analyse the variance for derivative measurements in different scenarios. Our work offers a toolbox for the efficient hardware-oriented differentiation needed for circuit optimization and operator-based derivative representation.
Generative adversarial learning is one of the most exciting recent breakthroughs in machine learning---a subfield of artificial intelligence that is currently driving a revolution in many aspects of modern society. It has shown splendid performance i
We propose a scheme to simulate the exciton energy transfer (EET) of photosynthetic complexes in a quantum superconducting circuit system. Our system is composed of two pairs of superconducting charge qubits coupled to two separated high-Q supercondu
We present a method that outputs a sequence of simple unitary operations to prepare a given quantum state that is a generalized coherent state. Our method takes as inputs the expectation values of some relevant observables on the state to be prepared
Superconducting circuits have become a leading quantum technology for testing fundamentals of quantum mechanics and for the implementation of advanced quantum information protocols. In this chapter, we revise the basic concepts of circuit network the
Nonadiabatic molecular dynamics occur in a wide range of chemical reactions and femtochemistry experiments involving electronically excited states. These dynamics are hard to treat numerically as the systems complexity increases and it is thus desira