ﻻ يوجد ملخص باللغة العربية
We study a family of convex polytopes, called SIM-bodies, which were introduced by Giannakopoulos and Koutsoupias (2018) to analyze so-called Straight-Jacket Auctions. First, we show that the SIM-bodies belong to the class of generalized permutahedra. Second, we prove an optimality result for the Straight-Jacket Auctions among certain deterministic auctions. Third, we employ computer algebra methods and mathematical software to explicitly determine optimal prices and revenues.
We study online learning in repeated first-price auctions with censored feedback, where a bidder, only observing the winning bid at the end of each auction, learns to adaptively bid in order to maximize her cumulative payoff. To achieve this goal, th
We present a general framework for proving polynomial sample complexity bounds for the problem of learning from samples the best auction in a class of simple auctions. Our framework captures all of the most prominent examples of simple auctions, incl
We study the design of auction within the correlation-robust framework in which the auctioneer is assumed to have information only about marginal distributions, but does not know the correlation structure of the joint distribution. The performance of
Guess Who? is a popular two player game where players ask Yes/No questions to search for their opponents secret identity from a pool of possible candidates. This is modeled as a simple stochastic game. Using this model, the optimal strategy is explic
We identify the first static credible mechanism for multi-item additive auctions that achieves a constant factor of the optimal revenue. This is one instance of a more general framework for designing two-part tariff auctions, adapting the duality fra