ﻻ يوجد ملخص باللغة العربية
We evaluate the vacuum polarization tensor (VPT) for a massless Dirac field in 1+1 and 3+1 dimensions, in the presence of a particular kind of defect, which in a special limit imposes bag boundary conditions. We also show that the chiral anomaly in the presence of such a defect is the same as when no defects are present, both in 1+1 and 3+1 dimensions. This implies that the induced vacuum current in 1+1 dimensions due to the lowest order VPT is exact.
In this paper we analyze the vacuum bosonic current and polarization induced by a magnetic flux running along a higher dimensional cosmic string in the presence of a flat boundary orthogonal to the string. In our analysis we assume that the quantum f
We investigate the vacuum polarization and the Casimir energy of a Dirac field coupled to a scalar potential in one spatial dimension. Both of these effects have a common cause which is the distortion of the spectrum due to the coupling with the back
In this talk, we describe recent experimental progress in detecting the chiral anomaly in the Dirac semimetal Na$_3$Bi in the presence of a magnetic field. The chiral anomaly, which plays a fundamental role in chiral gauge theories, was predicted to
We explore the connection between the distribution of particles spontaneously produced from an electric field or black hole and the vacuum persistence, twice the imaginary part of the one-loop effective action. Employing the reconstruction conjecture
In this paper, we consider a massive charged fermionic quantum field and investigate the current densities induced by a magnetic flux running along the core of an idealized cosmic string in the background geometry of a 5-dimensional anti-de Sitter sp