ﻻ يوجد ملخص باللغة العربية
In this paper we analyze the vacuum bosonic current and polarization induced by a magnetic flux running along a higher dimensional cosmic string in the presence of a flat boundary orthogonal to the string. In our analysis we assume that the quantum field obeys Dirichlet or Neunmann conditions on the flat boundary. In order to develop this analysis we calculate the corresponding Wightman function. As consequence of the boundary, the Wightamn function is expressed in term of two contributions: The first one corresponds to the boundary-free cosmic string Wightman function, while the second one is induced by the boundary. The boundary-induced contributions have opposite signs for Dirichlet and Newman scalars. Because the analysis of vacuum current and polarization effects in the boundary-free cosmic string spacetime have been developed in the literature, here we are mainly interested in the calculations of the effects induced by the boundary. Regarding to the induced current, we show that, depending on the condition adopted, the boundary-induced azimuthal current can cancel or intensifies the total induced azimuthal current on the boundary; moreover, the boundary-induced azimuthal current is a periodic odd function of the magnetic flux. As to the vacuum expectation values of the field squared and the energy-momentum tensor, the boundary-induced contributions are even functions of magnetic flux. In particular, we consider some special cases of the boundary-induced part of the energy density and evaluate the normal vacuum force on the boundary.
In this paper, we consider a massive charged fermionic quantum field and investigate the current densities induced by a magnetic flux running along the core of an idealized cosmic string in the background geometry of a 5-dimensional anti-de Sitter sp
We study the fermionic condensate (FC) and the vacuum expectation value (VEV) of the energy-momentum tensor for a massive spinor field in the de Sitter (dS) spacetime including an ideal cosmic string. In addition, spatial dimension along the string i
The relativistic charged spinor matter field is quantized in the background of a straight cosmic string with nonvanishing transverse size. The most general boundary conditions ensuring the impossibility for matter to penetrate through the edge of the
In the present paper, we study the vacuum bosonic currents in the geometry of a compactified cosmic string in the background of the de Sitter spacetime. The currents are induced by magnetic fluxes, one running along the cosmic string and another one
We investigate topological effects of a cosmic string and compactification of a spatial dimension on the vacuum expectation value (VEV) of the energy-momentum tensor for a fermionic field in (4+1)-dimensional locally AdS spacetime. The contribution i