ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Look Inside: Augmenting Token-Based Encoders with Character-Level Information

142   0   0.0 ( 0 )
 نشر من قبل Yuval Pinter
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Commonly-used transformer language models depend on a tokenization schema which sets an unchangeable subword vocabulary prior to pre-training, destined to be applied to all downstream tasks regardless of domain shift, novel word formations, or other sources of vocabulary mismatch. Recent work has shown that token-free models can be trained directly on characters or bytes, but training these models from scratch requires substantial computational resources, and this implies discarding the many domain-specific models that were trained on tokens. In this paper, we present XRayEmb, a method for retrofitting existing token-based models with character-level information. XRayEmb is composed of a character-level encoder that computes vector representations of character sequences, and a generative component that decodes from the internal representation to a character sequence. We show that incorporating XRayEmbs learned vectors into sequences of pre-trained token embeddings helps performance on both autoregressive and masked pre-trained transformer architectures and on both sequence-level and sequence tagging tasks, particularly on non-standard English text.



قيم البحث

اقرأ أيضاً

55 - Frederick Liu , Han Lu , Chieh Lo 2017
Previous work has modeled the compositionality of words by creating character-level models of meaning, reducing problems of sparsity for rare words. However, in many writing systems compositionality has an effect even on the character-level: the mean ing of a character is derived by the sum of its parts. In this paper, we model this effect by creating embeddings for characters based on their visual characteristics, creating an image for the character and running it through a convolutional neural network to produce a visual character embedding. Experiments on a text classification task demonstrate that such model allows for better processing of instances with rare characters in languages such as Chinese, Japanese, and Korean. Additionally, qualitative analyses demonstrate that our proposed model learns to focus on the parts of characters that carry semantic content, resulting in embeddings that are coherent in visual space.
Punctuation is critical in understanding natural language text. Currently, most automatic speech recognition (ASR) systems do not generate punctuation, which affects the performance of downstream tasks, such as intent detection and slot filling. This gives rise to the need for punctuation restoration. Recent work in punctuation restoration heavily utilizes pre-trained language models without considering data imbalance when predicting punctuation classes. In this work, we address this problem by proposing a token-level supervised contrastive learning method that aims at maximizing the distance of representation of different punctuation marks in the embedding space. The result shows that training with token-level supervised contrastive learning obtains up to 3.2% absolute F1 improvement on the test set.
Neural machine translation (NMT) is nowadays commonly applied at the subword level, using byte-pair encoding. A promising alternative approach focuses on character-level translation, which simplifies processing pipelines in NMT considerably. This app roach, however, must consider relatively longer sequences, rendering the training process prohibitively expensive. In this paper, we discuss a novel, Transformer-based approach, that we compare, both in speed and in quality to the Transformer at subword and character levels, as well as previously developed character-level models. We evaluate our models on 4 language pairs from WMT15: DE-EN, CS-EN, FI-EN and RU-EN. The proposed novel architecture can be trained on a single GPU and is 34% percent faster than the character-level Transformer; still, the obtained results are at least on par with it. In addition, our proposed model outperforms the subword-level model in FI-EN and shows close results in CS-EN. To stimulate further research in this area and close the gap with subword-level NMT, we make all our code and models publicly available.
134 - Hao Sun , Xu Tan , Jun-Wei Gan 2019
Grapheme-to-phoneme (G2P) conversion is an important task in automatic speech recognition and text-to-speech systems. Recently, G2P conversion is viewed as a sequence to sequence task and modeled by RNN or CNN based encoder-decoder framework. However , previous works do not consider the practical issues when deploying G2P model in the production system, such as how to leverage additional unlabeled data to boost the accuracy, as well as reduce model size for online deployment. In this work, we propose token-level ensemble distillation for G2P conversion, which can (1) boost the accuracy by distilling the knowledge from additional unlabeled data, and (2) reduce the model size but maintain the high accuracy, both of which are very practical and helpful in the online production system. We use token-level knowledge distillation, which results in better accuracy than the sequence-level counterpart. What is more, we adopt the Transformer instead of RNN or CNN based models to further boost the accuracy of G2P conversion. Experiments on the publicly available CMUDict dataset and an internal English dataset demonstrate the effectiveness of our proposed method. Particularly, our method achieves 19.88% WER on CMUDict dataset, outperforming the previous works by more than 4.22% WER, and setting the new state-of-the-art results.
We explore the suitability of self-attention models for character-level neural machine translation. We test the standard transformer model, as well as a novel variant in which the encoder block combines information from nearby characters using convol utions. We perform extensive experiments on WMT and UN datasets, testing both bilingual and multilingual translation to English using up to three input languages (French, Spanish, and Chinese). Our transformer variant consistently outperforms the standard transformer at the character-level and converges faster while learning more robust character-level alignments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا