ﻻ يوجد ملخص باللغة العربية
Grapheme-to-phoneme (G2P) conversion is an important task in automatic speech recognition and text-to-speech systems. Recently, G2P conversion is viewed as a sequence to sequence task and modeled by RNN or CNN based encoder-decoder framework. However, previous works do not consider the practical issues when deploying G2P model in the production system, such as how to leverage additional unlabeled data to boost the accuracy, as well as reduce model size for online deployment. In this work, we propose token-level ensemble distillation for G2P conversion, which can (1) boost the accuracy by distilling the knowledge from additional unlabeled data, and (2) reduce the model size but maintain the high accuracy, both of which are very practical and helpful in the online production system. We use token-level knowledge distillation, which results in better accuracy than the sequence-level counterpart. What is more, we adopt the Transformer instead of RNN or CNN based models to further boost the accuracy of G2P conversion. Experiments on the publicly available CMUDict dataset and an internal English dataset demonstrate the effectiveness of our proposed method. Particularly, our method achieves 19.88% WER on CMUDict dataset, outperforming the previous works by more than 4.22% WER, and setting the new state-of-the-art results.
The task of grapheme-to-phoneme (G2P) conversion is important for both speech recognition and synthesis. Similar to other speech and language processing tasks, in a scenario where only small-sized training data are available, learning G2P models is c
Punctuation is critical in understanding natural language text. Currently, most automatic speech recognition (ASR) systems do not generate punctuation, which affects the performance of downstream tasks, such as intent detection and slot filling. This
End-to-end approaches open a new way for more accurate and efficient spoken language understanding (SLU) systems by alleviating the drawbacks of traditional pipeline systems. Previous works exploit textual information for an SLU model via pre-trainin
Previous work on end-to-end translation from speech has primarily used frame-level features as speech representations, which creates longer, sparser sequences than text. We show that a naive method to create compressed phoneme-like speech representat
Despite the effectiveness of recurrent neural network language models, their maximum likelihood estimation suffers from two limitations. It treats all sentences that do not match the ground truth as equally poor, ignoring the structure of the output