ترغب بنشر مسار تعليمي؟ اضغط هنا

On the origin of entropy of gravitationally produced dark matter: the entanglement entropy

71   0   0.0 ( 0 )
 نشر من قبل Daniel Boyanovsky
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the emergence of entropy in gravitational production of dark matter particles, ultra light scalars minimally coupled to gravity and heavier fermions, from inflation to radiation domination (RD). Initial conditions correspond to dark matter fields in their Bunch-Davies vacua during inflation. The out states are correlated particle-antiparticle pairs, and the distribution function is found in both cases. In the adiabatic regime the density matrix features rapid decoherence by dephasing from interference effects in the basis of out particle states, effectively reducing it to a diagonal form with a concomitant von Neumann entropy. We show that it is exactly the entanglement entropy obtained by tracing over one member of the correlated pairs. Remarkably, for both statistics the entanglement entropy is similar to the quantum kinetic entropy in terms of the distribution function with noteworthy differences stemming from pair correlations. The entropy and the kinetic fluid form of the energy momentum tensor all originate from decoherence of the density matrix. For ultra light scalar dark matter, the distribution function peaks at low momentum $propto 1/k^3$ and the specific entropy is $ll 1$. This is a hallmark of a emph{condensed phase} but with vanishing field expectation value. For fermionic dark matter the distribution function is nearly thermal and the specific entropy is $mathcal{O}(1)$ typical of a thermal species. We argue that the functional form of the entanglement entropy is quite general and applies to alternative production mechanisms such as parametric amplification during reheating.



قيم البحث

اقرأ أيضاً

Perfect fluids are modeled by using an effective field theory approach which naturally gives a self-consistent and unambiguous description of the intrinsic non-adiabatic contribution to pressure variations. We study the impact of intrinsic entropy pe rturbation on the superhorizon dynamics of the curvature perturbation ${cal R}$ in the dark sector. The dark sector, made of dark matter and dark energy is described as a single perfect fluid. The non-perturbative vorticitys dynamics and the Weinberg theorem violation for perfect fluids are also studied.
It has been shown beyond reasonable doubt that the majority (about 95%) of the total energy budget of the universe is given by the dark components, namely Dark Matter and Dark Energy. What constitutes these components remains to be satisfactorily und erstood however, despite a number of promising candidates. An associated conundrum is that of the coincidence, i.e. the question as to why the Dark Matter and Dark Energy densities are of the same order of magnitude at the present epoch, after evolving over the entire expansion history of the universe. In an attempt to address these, we consider a quantum potential resulting from a quantum corrected Raychaudhuri/Friedmann equation in presence of a cosmic fluid, which is presumed to be a Bose-Einstein condensate (BEC) of ultralight bosons. For a suitable and physically motivated macroscopic ground state wavefunction of the BEC, we show that a unified picture of the cosmic dark sector can indeed emerge, thus resolving the issue of the coincidence. The effective Dark energy component turns out to be a cosmological constant, by virtue of a residual homogeneous term in the quantum potential. Furthermore, comparison with the observational data gives an estimate of the mass of the constituent bosons in the BEC, which is well within the bounds predicted from other considerations.
The necessary information to distinguish a local inhomogeneous mass density field from its spatial average on a compact domain of the universe can be measured by relative information entropy. The Kullback-Leibler (KL) formula arises very naturally in this context, however, it provides a very complicated way to compute the mutual information between spatially separated but causally connected regions of the universe in a realistic, inhomogeneous model. To circumvent this issue, by considering a parametric extension of the KL measure, we develop a simple model to describe the mutual information which is entangled via the gravitational field equations. We show that the Tsallis relative entropy can be a good approximation in the case of small inhomogeneities, and for measuring the independent relative information inside the domain, we propose the Renyi relative entropy formula.
In order to apply holography and entropy relations to the whole universe, which is a gravitational and thus nonextensive system, for consistency one should use the generalized definition for the universe horizon entropy, namely Tsallis nonextensive e ntropy. We formulate Tsallis holographic dark energy, which is a generalization of standard holographic dark energy quantified by a new dimensionless parameter $delta$, possessing the latter as a particular sub-case. We provide a simple differential equation for the dark energy density parameter, as well as an analytical expression for its equation-of-state parameter. In this scenario the universe exhibits the usual thermal history, namely the successive sequence of matter and dark-energy epochs, before resulting in a complete dark energy domination in the far future. Additionally, the dark energy equation-of-state parameter presents a rich behavior and, according to the value of $delta$, it can be quintessence-like, phantom-like, or experience the phantom-divide crossing before or after the present time. Finally, we confront the scenario with Supernovae type Ia and Hubble parameter observational data, and we show that the agreement is very good, with $delta$ preferring a value slightly larger than its standard value 1.
We examine the consequences of a universe with a non-constant cosmological term in Einsteins equations and find that the Bianchi identities reduce to the first law of thermodynamics when cosmological term is identified as being proportional to the en tropy density of the universe. This means that gravitating dark energy can be viewed as entropy, but more, the holographic principle along with the known expansion of the universe indicates that the entropy of the universe is growing with time and this leads to a cosmic repulsion that also grows with time. Direct implications of this result are calculated and shown to be in good accord with recent observational data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا