ترغب بنشر مسار تعليمي؟ اضغط هنا

Follow up of the IceCube alerts with the Baikal-GVD telescope

63   0   0.0 ( 0 )
 نشر من قبل Viktoriya Dik
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The high-energy muon neutrino events of the IceCube telescope, that are triggered as neutrino alerts in one of two probability ranks of astrophysical origin, gold and bronze, have been followed up by the Baikal-GVD in a fast quasi-online mode since September 2020. Search for correlations between alerts and GVD events reconstructed in two modes, muon-track and electromagnetic shower (cascade), for the time windows $ pm $ 1 h and $ pm $ 12 h does not indicate statistically significant excess of the measured events over the expected number of background events. Upper limits on the neutrino fluence will be presented for each alert.



قيم البحث

اقرأ أيضاً

Baikal-GVD is a km$^3$-scale neutrino telescope being constructed in Lake Baikal. Muon and partially tau (anti)neutrino interactions near the detector through the W$^{pm}$-boson exchange are accompanied by muon tracks. Reconstructed direction of the track is arguably the most precise probe of the neutrino direction attainable in Cerenkov neutrino telescopes. Muon reconstruction techniques adopted by Baikal-GVD are discussed in the present report. Performance of the muon reconstruction is studied using realistic Monte Carlo simulation of the detector. The algorithms are applied to real data from Baikal-GVD and the results are compared with simulations. The performance of the neutrino selection based on a boosted decision tree classifier is discussed.
We present data on the luminescence of the Baikal water medium collected with the Baikal-GVD neutrino telescope. This three-dimensional array of light sensors allows the observation of time and spatial variations of the ambient light field. We report on observation of an increase of luminescence activity in 2016 and 2018. On the contrary, we observed practically constant optical noise in 2017. An agreement has been found between two independent optical noise data sets. These are data collected with online monitoring system and the trigger system of the cluster.
The Baikal-GVD deep underwater neutrino experiment participates in the international multi-messenger program on discovering the astrophysical sources of high energy fluxes of cosmic particles, while being at the stage of deployment with a gradual inc rease of its effective volume to the scale of a cubic kilometer. In April 2021 the effective volume of the detector has been reached 0.4 km3 for cascade events with energy above 100 TeV generated by neutrino interactions in Lake Baikal. The alarm system in real-time monitoring of the celestial sphere was launched at the beginning of 2021, that allows to form the alerts of two ranks like muon neutrino and VHE cascade. Recent results of fast follow-up searches for coincidences of Baikal-GVD high energy cascades with ANTARES/TAToO high energy neutrino alerts and IceCube GCN messages will be presented, as well as preliminary results of searches for high energy neutrinos in coincidence with the magnetar SGR 1935+2154 activity in period of radio and gamma burst in 2020.
128 - Dmitry Zaborov 2020
Neutrino astronomy offers a novel view of the non-thermal Universe and is complementary to other astronomical disciplines. The field has seen rapid progress in recent years, including the first detection of astrophysical neutrinos in the TeV-PeV ener gy range by IceCube and the first identified extragalactic neutrino source (TXS 0506+056). Further discoveries are aimed for with new cubic-kilometer telescopes in the Northern Hemisphere: Baikal-GVD, in Lake Baikal, and KM3NeT-ARCA, in the Mediterranean sea. The construction of Baikal-GVD proceeds as planned; the detector currently includes over 2000 optical modules arranged on 56 strings, providing an effective volume of 0.35 km$^3$. We review the scientific case for Baikal-GVD, the construction plan, and first results from the partially built array.
Baikal-GVD is a neutrino telescope currently under construction in Lake Baikal. GVD is formed by multi-meganton subarrays (clusters). The design of Baikal-GVD allows one to search for astrophysical neutrinos already at early phases of the array const ruction. We present here preliminary results of a search for high-energy neutrinos with GVD in 2019-2020.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا