ترغب بنشر مسار تعليمي؟ اضغط هنا

High-energy neutrino astronomy and the Baikal-GVD neutrino telescope

129   0   0.0 ( 0 )
 نشر من قبل Dmitry Zaborov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Dmitry Zaborov




اسأل ChatGPT حول البحث

Neutrino astronomy offers a novel view of the non-thermal Universe and is complementary to other astronomical disciplines. The field has seen rapid progress in recent years, including the first detection of astrophysical neutrinos in the TeV-PeV energy range by IceCube and the first identified extragalactic neutrino source (TXS 0506+056). Further discoveries are aimed for with new cubic-kilometer telescopes in the Northern Hemisphere: Baikal-GVD, in Lake Baikal, and KM3NeT-ARCA, in the Mediterranean sea. The construction of Baikal-GVD proceeds as planned; the detector currently includes over 2000 optical modules arranged on 56 strings, providing an effective volume of 0.35 km$^3$. We review the scientific case for Baikal-GVD, the construction plan, and first results from the partially built array.



قيم البحث

اقرأ أيضاً

Baikal-GVD is a neutrino telescope currently under construction in Lake Baikal. GVD is formed by multi-meganton subarrays (clusters). The design of Baikal-GVD allows one to search for astrophysical neutrinos already at early phases of the array const ruction. We present here preliminary results of a search for high-energy neutrinos with GVD in 2019-2020.
The Advanced LIGO and Advanced Virgo observatories recently discovered gravitational waves from a binary neutron star inspiral. A short gamma-ray burst (GRB) that followed the merger of this binary was also recorded by Fermi-GBM and INTEGRAL, indicat ing particle acceleration by the source. The precise location of the event was determined by optical detections of emission following the merger. We searched for high-energy neutrinos from the merger in the TeV - 100 PeV energy range using Baikal-GVD. No neutrinos directionally coincident with the source were detected within $pm$500 s around the merger time, as well as during a 14-day period after the GW detection. We derived 90% confidence level upper limits on the neutrino fluence from GW170817 during a $pm$500 s window centered on the GW trigger time, and a 14-day window following the GW signal under the assumption of an $E^{-2}$ neutrino energy spectrum.
Multi-messenger astronomy is a powerful tool to study the physical processes driving the non-thermal Universe. A combination of observations in cosmic rays, neutrinos, photons of all wavelengths and gravitational waves is expected. The alert system o f the Baikal-GVD detector under construction will allow for a fast, on-line reconstruction of neutrino events recorded by the Baikal-GVD telescope and - if predefined conditions are satisfied - for the formation of an alert message to other communities. The preliminary results of searches for high-energy neutrinos in coincidence with GW170817/GRB170817A using the cascade mode of neutrino detection are discussed. Two Baikal-GVD clusters were operating during 2017. The zenith angle of NGC 4993 at the detection time of the GW170817 was 93.3 degrees. No events spatially coincident with GRB170817A were found. Given the non-detection of neutrino events associated with GW170817, upper limits on the neutrino fluence were established.
Baikal-GVD is a km$^3$-scale neutrino telescope being constructed in Lake Baikal. Muon and partially tau (anti)neutrino interactions near the detector through the W$^{pm}$-boson exchange are accompanied by muon tracks. Reconstructed direction of the track is arguably the most precise probe of the neutrino direction attainable in Cerenkov neutrino telescopes. Muon reconstruction techniques adopted by Baikal-GVD are discussed in the present report. Performance of the muon reconstruction is studied using realistic Monte Carlo simulation of the detector. The algorithms are applied to real data from Baikal-GVD and the results are compared with simulations. The performance of the neutrino selection based on a boosted decision tree classifier is discussed.
We analyse sensitivity of the gigaton volume telescope Baikal-GVD for detection of neutrino signal from dark matter annihilations or decays in the Galactic Center. Expected bounds on dark matter annihilation cross section and its lifetime are found for several annihilation/decay channels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا