ﻻ يوجد ملخص باللغة العربية
Astrophysical neutrino fluxes are often modeled as power laws of the energy. This is reasonable in the case of hadronic sources, but it does not capture the behavior in photohadronic sources, where the spectrum depends on the properties of the target photons on which protons collide. This limits the possibility of a unified treatment of different sources. In order to overcome this difficulty, we model the target photons by a blackbody spectrum. This model is sufficiently flexible to reproduce neutrino fluxes from known photohadronic sources; we apply it to study the sensitivity of Dense Neutrino Arrays, Neutrino Telescopes and Neutrino Radio Arrays to photohadronic sources. We also classify the flavor composition of the neutrino spectrum in terms of the parameter space. We discuss the interplay with the experiments, studying the changes in the track-to-shower ratio induced by different flavor compositions, both within and outside the region of the Glashow resonance.
The IceCube Collaboration has observed a high-energy astrophysical neutrino flux and recently found evidence for neutrino emission from the blazar TXS 0506+056. These results open a new window into the high-energy universe. However, the source or sou
We discuss the first applications of our newly developed Monte Carlo event generator SOPHIA to multiparticle photoproduction of relativistic protons with thermal and power law radiation fields. The measured total cross section is reproduced in terms
We present the reconstruction of neutrino flavor ratios at astrophysical sources. For distinguishing the pion source and the muon-damped source to the 3$sigma$ level, the neutrino flux ratios, $Requivphi( u_mu)/(phi( u_e)+phi( u_tau))$ and $Sequivphi
When muons travel through matter, their energy losses lead to nuclear breakup (spallation) processes. The delayed decays of unstable daughter nuclei produced by cosmic-ray muons are important backgrounds for low-energy astrophysical neutrino experime
We discuss the reconstruction of neutrino flavor ratios at astrophysical sources through the future neutrino-telescope measurements. Taking the ranges of neutrino mixing parameters $theta_{ij}$ as those given by the current global fit, we demonstrate