ﻻ يوجد ملخص باللغة العربية
We discuss the reconstruction of neutrino flavor ratios at astrophysical sources through the future neutrino-telescope measurements. Taking the ranges of neutrino mixing parameters $theta_{ij}$ as those given by the current global fit, we demonstrate by a statistical method that the accuracies in the measurements of energy-independent ratios $Requivphi ( u_{mu})/(phi ( u_{e})+phi ( u_{tau}))$ and $Sequivphi ( u_e)/phi ( u_{tau})$ among integrated neutrino flux should both be better than 10% in order to distinguish between the pion source and the muon-damped source at the $3 sigma$ level. The 10% accuracy needed for measuring $R$ and $S$ requires an improved understanding on the background atmospheric neutrino flux to a better than 10% level in the future. We discuss the applicability of our analysis to practical situations that the diffuse astrophysical neutrino flux arises from different types of sources and each point source has a neutrino flavor ratio varying with energies. We also discuss the effect of leptonic CP phase on the flavor-ratio reconstruction.
We present the reconstruction of neutrino flavor ratios at astrophysical sources. For distinguishing the pion source and the muon-damped source to the 3$sigma$ level, the neutrino flux ratios, $Requivphi( u_mu)/(phi( u_e)+phi( u_tau))$ and $Sequivphi
We discuss the reconstruction of neutrino flavor neutrino at a distant source in the very high en- ergy regime. This reconstruction procedure is relevant to the confirmation of detecting cosmogenic neutrinos, for example. To facilitate such a reconst
The high-energy astrophysical neutrinos recently discovered by IceCube opened a new way to test Lorentz and CPT violation through the astrophysical neutrino mixing properties. The flavor ratio of astrophysical neutrinos is a very powerful tool to inv
It is shown how high energy neutrino beams from very distant sources can be utilized to learn about many properties of neutrinos such as lifetimes, mass hierarchy, mixing, minuscule pseudo-Dirac mass splittings; in addition, the production mechanism