ﻻ يوجد ملخص باللغة العربية
Nearly all dense suspensions undergo dramatic and abrupt thickening transitions in their flow behavior when sheared at high stresses. Such transitions occur when the dominant interactions between the suspended particles shift from hydrodynamic to frictional. Here, we interpret abrupt shear thickening as a precursor to a rigidity transition, and give a complete theory of the viscosity in terms of a universal crossover scaling function from the frictionless jamming point to a rigidity transition associated with friction, anisotropy, and shear. Strikingly, we find experimentally that for two different systems -- cornstarch in glycerol and silica spheres in glycerol -- the viscosity can be collapsed onto a single universal curve over a wide range of stresses and volume fractions. The collapse reveals two separate scaling regimes, due to a crossover between frictionless isotropic jamming and a frictional shear jamming point with different critical exponents. The material-specific behavior due to the microscale particle interactions is incorporated into an additive analytic background (given by the viscosity at low shear rates) and a scaling variable governing the proximity to shear jamming that depends on both stress and volume fraction. This reformulation opens the door to importing the vast theoretical machinery developed to understand equilibrium critical phenomena to elucidate fundamental physical aspects of the shear thickening transition.
Dense suspensions are non-Newtonian fluids which exhibit strong shear thickening and normal stress differences. Using numerical simulation of extensional and shear flows, we investigate how rheological properties are determined by the microstructure
Shear thickening denotes the rapid and reversible increase in viscosity of a suspension of rigid particles under external shear. This ubiquitous phenomenon has been documented in a broad variety of multiphase particulate systems, while its microscopi
We study the strain response to steady imposed stress in a spatially homogeneous, scalar model for shear thickening, in which the local rate of yielding Gamma(l) of mesoscopic `elastic elements is not monotonic in the local strain l. Despite this, th
The shear-induced reversible self-organization of active rotors into strip-like aggregates is studied by carrying out computational simulations. The numerical and theoretical results demonstrate that the average width of the strips is linearly depend
The phenomenon of shear-induced jamming is a factor in the complex rheological behavior of dense suspensions. Such shear-jammed states are fragile, i.e., they are not stable against applied stresses that are incompatible with the stress imposed to cr