ﻻ يوجد ملخص باللغة العربية
Dense suspensions are non-Newtonian fluids which exhibit strong shear thickening and normal stress differences. Using numerical simulation of extensional and shear flows, we investigate how rheological properties are determined by the microstructure which is built under flows and by the interactions between particles. By imposing extensional and shear flows, we can assess the degree of flow-type dependence in regimes below and above thickening. Even when the flow-type dependence is hindered, nondissipative responses, such as normal stress differences, are present and characterise the non-Newtonian behaviour of dense suspensions.
The phenomenon of shear-induced jamming is a factor in the complex rheological behavior of dense suspensions. Such shear-jammed states are fragile, i.e., they are not stable against applied stresses that are incompatible with the stress imposed to cr
Shear thickening denotes the rapid and reversible increase in viscosity of a suspension of rigid particles under external shear. This ubiquitous phenomenon has been documented in a broad variety of multiphase particulate systems, while its microscopi
Nearly all dense suspensions undergo dramatic and abrupt thickening transitions in their flow behavior when sheared at high stresses. Such transitions occur when the dominant interactions between the suspended particles shift from hydrodynamic to fri
Dense suspensions of particles are relevant to many applications and are a key platform for developing a fundamental physics of out-of-equilibrium systems. They present challenging flow properties, apparently turning from liquid to solid upon small c
Molecular dynamics simulations confirm recent extensional flow experiments showing ring polymer melts exhibit strong extension-rate thickening of the viscosity at Weissenberg numbers $Wi<<1$. Thickening coincides with the extreme elongation of a mino