ترغب بنشر مسار تعليمي؟ اضغط هنا

Integration of hBN quantum emitters in monolithically fabricated waveguides

117   0   0.0 ( 0 )
 نشر من قبل Igor Aharonovich
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hexagonal boron nitride (hBN) is gaining interest for potential applications in integrated quantum nanophotonics. Yet, to establish hBN as an integrated photonic platform several cornerstones must be established, including the integration and coupling of quantum emitters to photonic waveguides. Supported by simulations, we study the approach of monolithic integration, which is expected to have coupling efficiencies that are 4 times higher than those of a conventional hybrid stacking strategy. We then demonstrate the fabrication of such devices from hBN and showcase the successful integration of hBN single photon emitters with a monolithic waveguide. We demonstrate coupling of single photons from the quantum emitters to the waveguide modes and on-chip detection. Our results build a general framework for monolithically integrated hBN single photon emitter and will facilitate future works towards on-chip integrated quantum photonics with hBN.



قيم البحث

اقرأ أيضاً

Photon-mediated coupling between distant matter qubits may enable secure communication over long distances, the implementation of distributed quantum computing schemes, and the exploration of new regimes of many-body quantum dynamics. Nanophotonic de vices coupled to solid-state quantum emitters represent a promising approach towards realization of these goals, as they combine strong light-matter interaction and high photon collection efficiencies. However, the scalability of these approaches is limited by the frequency mismatch between solid-state emitters and the instability of their optical transitions. Here we present a nano-electromechanical platform for stabilization and tuning of optical transitions of silicon-vacancy (SiV) color centers in diamond nanophotonic devices by dynamically controlling their strain environments. This strain-based tuning scheme has sufficient range and bandwidth to alleviate the spectral mismatch between individual SiV centers. Using strain, we ensure overlap between color center optical transitions and observe an entangled superradiant state by measuring correlations of photons collected from the diamond waveguide. This platform for tuning spectrally stable color centers in nanophotonic waveguides and resonators constitutes an important step towards a scalable quantum network.
Integration of superconducting nanowire single photon detectors and quantum sources with photonic waveguides is crucial for realizing advanced quantum integrated circuits. However, scalability is hindered by stringent requirements on high performance detectors. Here we overcome the yield limitation by controlled coupling of photonic channels to pre-selected detectors based on measuring critical current, timing resolution, and detection efficiency. As a proof of concept of our approach, we demonstrate a hybrid on-chip full-transceiver consisting of a deterministically integrated detector coupled to a selected nanowire quantum dot through a filtering circuit made of a silicon nitride waveguide and a ring resonator filter, delivering 100 dB suppression of the excitation laser. In addition, we perform extensive testing of the detectors before and after integration in the photonic circuit and show that the high performance of the superconducting nanowire detectors, including timing jitter down to 23 $pm$ 3 ps, is maintained. Our approach is fully compatible with wafer level automated testing in a cleanroom environment.
The goal of integrated quantum photonics is to combine components for the generation, manipulation, and detection of non-classical light in a phase stable and efficient platform. Solid-state quantum emitters have recently reached outstanding performa nce as single photon sources. In parallel, photonic integrated circuits have been advanced to the point that thousands of components can be controlled on a chip with high efficiency and phase stability. Consequently, researchers are now beginning to combine these leading quantum emitters and photonic integrated circuit platforms to realize the best properties of each technology. In this article, we review recent advances in integrated quantum photonics based on such hybrid systems. Although hybrid integration solves many limitations of individual platforms, it also introduces new challenges that arise from interfacing different materials. We review various issues in solid-state quantum emitters and photonic integrated circuits, the hybrid integration techniques that bridge these two systems, and methods for chip-based manipulation of photons and emitters. Finally, we discuss the remaining challenges and future prospects of on-chip quantum photonics with integrated quantum emitters.
Quantum photonics technologies require a scalable approach for integration of non-classical light sources with photonic resonators to achieve strong light confinement and enhancement of quantum light emission. Point defects from hexagonal Boron Nitri de (hBN) are amongst the front runners for single photon sources due to their ultra bright emission, however, coupling of hBN defects to photonic crystal cavities has so far remained elusive. Here we demonstrate on-chip integration of hBN quantum emitters with photonic crystal cavities from silicon nitride (Si3N4) and achieve experimentally measured Q-factor of 3,300 for hBN/Si3N4 hybrid cavities. We observed 9-fold photoluminescence enhancement of a hBN single photon emission at room temperature. Our work paves the way towards hybrid integrated quantum photonics with hBN, and outlines an excellent path for further development of cavity quantum electrodynamic experiments and on-chip integration of 2D materials.
Color centers in solids are the fundamental constituents of a plethora of applications such as lasers, light emitting diodes and sensors, as well as the foundation of advanced quantum information and communication technologies. Their photoluminescenc e properties are usually studied under Stokes excitation, in which the emitted photons are at a lower energy than the excitation ones. In this work, we explore the opposite Anti-Stokes process, where excitation is performed with lower energy photons. We report that the process is sufficiently efficient to excite even a single quantum system, namely the germanium-vacancy center in diamond. Consequently, we leverage the temperature-dependent, phonon-assisted mechanism to realize an all-optical nanoscale thermometry scheme that outperforms any homologous optical method employed to date. Our results frame a promising approach for exploring fundamental light-matter interactions in isolated quantum systems, and harness it towards the realization of practical nanoscale thermometry and sensing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا