ﻻ يوجد ملخص باللغة العربية
We present a broadband radio study of the transient jets ejected from the black hole candidate X-ray binary MAXI J1535-571, which underwent a prolonged outburst beginning on 2 September 2017. We monitored MAXI J1535-571 with the Murchison Widefield Array (MWA) at frequencies from 119 to 186 MHz over six epochs from 20 September to 14 October 2017. The source was quasi-simultaneously observed over the frequency range 0.84-19 GHz by UTMOST (the upgraded Molonglo Observatory Synthesis Telescope), the Australian Square Kilometre Array Pathfinder, the Australia Telescope Compact Array (ATCA), and the Australian Long Baseline Array (LBA). Using the LBA observations from 23 September 2017, we measured the source size to be $34pm1$ mas. During the brightest radio flare on 21 September 2017, the source was detected down to 119 MHz by the MWA, and the radio spectrum indicates a turnover between 250 and 500 MHz, which is most likely due to synchrotron self-absorption (SSA). By fitting the radio spectrum with a SSA model and using the LBA size measurement, we determined various physical parameters of the jet knot (identified in ATCA data), including the jet opening angle (= $4.5pm1.2^{circ}$) and the magnetic field strength (= $104^{+80}_{-78}$ mG). Our fitted magnetic field strength agrees reasonably well with that inferred from the standard equipartition approach, suggesting the jet knot to be close to equipartition. Our study highlights the capabilities of the Australian suite of radio telescopes to jointly probe radio jets in black hole X-ray binaries (BH-XRBs) via simultaneous observations over a broad frequency range, and with differing angular resolutions. This suite allows us to determine the physical properties of XRB jets. Finally, our study emphasizes the potential contributions that can be made by the low-frequency part of the Square Kilometre Array (SKA-Low) in the study of BH-XRBs.
We present results from six epochs of quasi-simultaneous radio, (sub-)millimetre, infrared, optical, and X-ray observations of the black hole X-ray binary MAXI~J1535$-$571. These observations show that as the source transitioned through the hard-inte
We report on the results of optical, near-infrared (NIR) and mid-infrared observations of the black hole X-ray binary candidate (BHB) MAXI J1535-571 during its 2017/2018 outburst. During the first part of the outburst (MJD 58004-58012), the source sh
With the Australian Square Kilometre Array Pathfinder (ASKAP) we monitored the black hole candidate X-ray binary MAXI J1535--571 over seven epochs from 21 September to 2 October 2017. Using ASKAP observations, we studied the HI absorption spectrum fr
MAXI J1535-571 is a Galactic black hole candidate X-ray binary that was discovered going into outburst in 2017 September. In this paper, we present comprehensive radio monitoring of this system using the Australia Telescope Compact Array (ATCA), as w
The main outburst of the candidate black hole low-mass X-ray binary (BH LMXB) MAXI J1535-571 ended in 2018 May and was followed by at least five episodes of re-brightenings. We have monitored this re-brightening phenomenon at X-ray and radio waveleng