ترغب بنشر مسار تعليمي؟ اضغط هنا

Rapidly evolving disk-jet coupling during re-brightenings in the black hole transient MAXI J1535-571

72   0   0.0 ( 0 )
 نشر من قبل Aastha Parikh
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The main outburst of the candidate black hole low-mass X-ray binary (BH LMXB) MAXI J1535-571 ended in 2018 May and was followed by at least five episodes of re-brightenings. We have monitored this re-brightening phenomenon at X-ray and radio wavelengths using the {it Neil Gehrels Swift Observatory} and Australia Telescope Compact Array, respectively. The first two re-brightenings exhibited a high peak X-ray luminosity (implying a high mass accretion rate) and were observed to transition from the hard to the soft state. However, unlike the main outburst, these re-brightenings did not exhibit clear hysteresis. During the re-brightenings, when MAXI J1535-571 was in the hard state, we observed the brightening of a compact radio jet which was subsequently quenched when the source transitioned to a similar soft state as was observed during the main outburst. We report on the first investigation of disk-jet coupling over multiple rapidly evolving re-brightenings in a BH LMXB. We find that the accretion flow properties and the accompanying compact jet evolve on a similarly rapid time scale of ~days rather than the typical value of ~weeks as observed for most other BH LMXBs during their main outburst events.



قيم البحث

اقرأ أيضاً

MAXI J1535-571 is a Galactic black hole candidate X-ray binary that was discovered going into outburst in 2017 September. In this paper, we present comprehensive radio monitoring of this system using the Australia Telescope Compact Array (ATCA), as w ell as the MeerKAT radio observatory, showing the evolution of the radio jet during its outburst. Our radio observations show the early rise and subsequent quenching of the compact jet as the outburst brightened and then evolved towards the soft state. We constrain the compact jet quenching factor to be more than 3.5 orders of magnitude. We also detected and tracked (for 303 days) a discrete, relativistically-moving jet knot that was launched from the system. From the motion of the apparently superluminal knot, we constrain the jet inclination (at the time of ejection) and speed to $leq 45^{circ}$ and $geq0.69$c, respectively. Extrapolating its motion back in time, our results suggest that the jet knot was ejected close in time to the transition from the hard intermediate state to soft intermediate state. The launching event also occurred contemporaneously with a short increase in X-ray count rate, a rapid drop in the strength of the X-ray variability, and a change in the type-C quasi-periodic oscillation (QPO) frequency that occurs $>$2.5 days before the first appearance of a possible type-B QPO.
We report on the results of optical, near-infrared (NIR) and mid-infrared observations of the black hole X-ray binary candidate (BHB) MAXI J1535-571 during its 2017/2018 outburst. During the first part of the outburst (MJD 58004-58012), the source sh ows an optical-NIR spectrum that is consistent with an optically thin synchrotron power-law from a jet. After MJD 58015, however, the source faded considerably, the drop in flux being much more evident at lower frequencies. Before the fading, we measure a de-reddened flux density of $gtrsim$100 mJy in the mid-infrared, making MAXI J1535-571 one of the brightest mid-infrared BHBs known so far. A significant softening of the X-ray spectrum is evident contemporaneous with the infrared fade. We interpret it as due to the suppression of the jet emission, similar to the accretion-ejection coupling seen in other BHBs. However, MAXI J1535-571 did not transition smoothly to the soft state, instead showing X-ray hardness deviations, associated with infrared flaring. We also present the first mid-IR variability study of a BHB on minute timescales, with a fractional rms variability of the light curves of $sim 15-22 %$, which is similar to that expected from the internal shock jet model, and much higher than the optical fractional rms ($lesssim 7 %$). These results represent an excellent case of multi-wavelength jet spectral-timing and demonstrate how rich, multi-wavelength time-resolved data of X-ray binaries over accretion state transitions can help refining models of the disk-jet connection and jet launching in these systems.
We present a broadband radio study of the transient jets ejected from the black hole candidate X-ray binary MAXI J1535-571, which underwent a prolonged outburst beginning on 2 September 2017. We monitored MAXI J1535-571 with the Murchison Widefield A rray (MWA) at frequencies from 119 to 186 MHz over six epochs from 20 September to 14 October 2017. The source was quasi-simultaneously observed over the frequency range 0.84-19 GHz by UTMOST (the upgraded Molonglo Observatory Synthesis Telescope), the Australian Square Kilometre Array Pathfinder, the Australia Telescope Compact Array (ATCA), and the Australian Long Baseline Array (LBA). Using the LBA observations from 23 September 2017, we measured the source size to be $34pm1$ mas. During the brightest radio flare on 21 September 2017, the source was detected down to 119 MHz by the MWA, and the radio spectrum indicates a turnover between 250 and 500 MHz, which is most likely due to synchrotron self-absorption (SSA). By fitting the radio spectrum with a SSA model and using the LBA size measurement, we determined various physical parameters of the jet knot (identified in ATCA data), including the jet opening angle (= $4.5pm1.2^{circ}$) and the magnetic field strength (= $104^{+80}_{-78}$ mG). Our fitted magnetic field strength agrees reasonably well with that inferred from the standard equipartition approach, suggesting the jet knot to be close to equipartition. Our study highlights the capabilities of the Australian suite of radio telescopes to jointly probe radio jets in black hole X-ray binaries (BH-XRBs) via simultaneous observations over a broad frequency range, and with differing angular resolutions. This suite allows us to determine the physical properties of XRB jets. Finally, our study emphasizes the potential contributions that can be made by the low-frequency part of the Square Kilometre Array (SKA-Low) in the study of BH-XRBs.
We present results from six epochs of quasi-simultaneous radio, (sub-)millimetre, infrared, optical, and X-ray observations of the black hole X-ray binary MAXI~J1535$-$571. These observations show that as the source transitioned through the hard-inte rmediate X-ray state towards the soft intermediate X-ray state, the jet underwent dramatic and rapid changes. We observed the frequency of the jet spectral break, which corresponds to the most compact region in the jet where particle acceleration begins (higher frequencies indicate closer to the black hole), evolve from the IR band into the radio band (decreasing by $approx$3 orders of magnitude) in less than a day. During one observational epoch, we found evidence of the jet spectral break evolving in frequency through the radio band. Estimating the magnetic field and size of the particle acceleration region shows that the rapid fading of the high-energy jet emission was not consistent with radiative cooling; instead the particle acceleration region seems to be moving away from the black hole on approximately dynamical timescales. This result suggests that the compact jet quenching is not caused by local changes to the particle acceleration, rather we are observing the acceleration region of the jet travelling away from the black hole with the jet flow. Spectral analysis of the X-ray emission show a gradual softening in the few days before the dramatic jet changes, followed by a more rapid softening $sim$1--2,days after the onset of the jet quenching.
61 - J. M. Miller 2018
We report on a NICER observation of the Galactic X-ray binary and stellar-mass black hole candidate, MAXI J1535-571. The source was likely observed in an intermediate or very high state, with important contributions from both an accretion disk and ha rd X-ray corona. The 2.3-10 keV spectrum shows clear hallmarks of relativistic disk reflection. Fits with a suitable model strongly indicate a near-maximal spin parameter of a = cJ/GM^2 = 0.994(2) and a disk that extends close to the innermost stable circular orbit, r/r_ISCO = 1.08(8) (1-sigma statistical errors). In addition to the relativistic spectrum from the innermost disk, a relatively narrow Fe K emission line is also required. The resolution of NICER reveals that the narrow line may be asymmetric, indicating a specific range of emission radii. Fits with a relativistic line model suggest an inner radius of r = 144 (+140,-60) GM/c^2 for the putative second reflection geometry; full reflection models suggest that radii a few times larger are possible. The origin of the narrow line is uncertain but a warp likely provides the most physically plausible explanation. We discuss our results in terms of the potential for NICER to reveal new features of the inner and intermediate accretion disk around black holes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا