ﻻ يوجد ملخص باللغة العربية
The direct detection of sub-GeV dark matter interacting with nucleons is hampered by to the low recoil energies induced by scatterings in the detectors. This experimental difficulty is avoided in the scenario of boosted dark matter where a component of dark matter particles is endowed with large kinetic energies. In this Letter, we point out that the current evaporation of primordial black holes with masses from $10^{14}$ to $10^{16}$ g is a source of boosted light dark matter with energies of tens to hundreds of MeV. Focusing on the XENON1T experiment, we show that these relativistic dark matter particles could give rise to a signal orders of magnitude larger than the present upper bounds. Therefore, we are able to significantly constrain the combined parameter space of primordial black holes and sub-GeV dark matter. In the presence of primordial black holes with a mass of $10^{15}~mathrm{g}$ and an abundance compatible with present bounds, the limits on DM-nucleon cross-section are improved by four orders of magnitude.
The mechanism of the generation of dark matter and dark radiation from the evaporation of primordial black holes is very interesting. We consider the case of Kerr black holes to generalize previous results obtained in the Schwarzschild case. For dark
Primordial black holes (PBHs) hypothetically generated in the first instants of life of the Universe are potential dark matter (DM) candidates. Focusing on PBHs masses in the range $[5 times10^{14} - 5 times 10^{15}]$g, we point out that the neutrino
We investigate the effects of producing dark matter by Hawking evaporation of primordial black holes (PBHs) in scenarios that may have a second well-motivated dark matter production mechanism, such as freeze-out, freeze-in, or gravitational productio
Beginning with a set of simplified models for spin-0, spin-$half$, and spin-1 dark matter candidates using completely general Lorentz invariant and renormalizable Lagrangians, we derive the full set of non-relativistic operators and nuclear matrix el
Primordial black holes (PBHs) are a potential dark matter candidate whose masses can span over many orders of magnitude. If they have masses in the $10^{15}-10^{17}$ g range, they can emit sizeable fluxes of MeV neutrinos through evaporation via Hawk