ترغب بنشر مسار تعليمي؟ اضغط هنا

A General Analysis of Direct Dark Matter Detection: From Microphysics to Observational Signatures

128   0   0.0 ( 0 )
 نشر من قبل Lawrence M. Krauss
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف James B. Dent




اسأل ChatGPT حول البحث

Beginning with a set of simplified models for spin-0, spin-$half$, and spin-1 dark matter candidates using completely general Lorentz invariant and renormalizable Lagrangians, we derive the full set of non-relativistic operators and nuclear matrix elements relevant for direct detection of dark matter, and use these to calculate rates and recoil spectra for scattering on various target nuclei. This allows us to explore what high energy physics constraints might be obtainable from direct detection experiments, what degeneracies exist, which operators are ubiquitous and which are unlikely or sub-dominant. We find that there are operators which are common to all spins as well operators which are unique to spin-$half$ and spin-1 and elucidate two new operators which have not been previously considered. In addition we demonstrate how recoil energy spectra can distinguish fundamental microphysics if multiple target nuclei are used. Our work provides a complete roadmap for taking generic fundamental dark matter theories and calculating rates in direct detection experiments. This provides a useful guide for experimentalists designing experiments and theorists developing new dark matter models.



قيم البحث

اقرأ أيضاً

The direct detection of sub-GeV dark matter interacting with nucleons is hampered by to the low recoil energies induced by scatterings in the detectors. This experimental difficulty is avoided in the scenario of boosted dark matter where a component of dark matter particles is endowed with large kinetic energies. In this Letter, we point out that the current evaporation of primordial black holes with masses from $10^{14}$ to $10^{16}$ g is a source of boosted light dark matter with energies of tens to hundreds of MeV. Focusing on the XENON1T experiment, we show that these relativistic dark matter particles could give rise to a signal orders of magnitude larger than the present upper bounds. Therefore, we are able to significantly constrain the combined parameter space of primordial black holes and sub-GeV dark matter. In the presence of primordial black holes with a mass of $10^{15}~mathrm{g}$ and an abundance compatible with present bounds, the limits on DM-nucleon cross-section are improved by four orders of magnitude.
We provide expressions for the nonperturbative matching of the effective field theory describing dark matter interactions with quarks and gluons to the effective theory of nonrelativistic dark matter interacting with nonrelativistic nucleons. We give the leading and subleading order expressions in chiral counting. In general, a single partonic operator already matches onto several nonrelativistic operators at leading order in chiral counting. Thus, keeping only one operator at the time in the nonrelativistic effective theory does not properly describe the scattering in direct detection. Moreover, the matching of the axial--axial partonic level operator, as well as the matching of the operators coupling DM to the QCD anomaly term, naively include momentum suppressed terms. However, these are still of leading chiral order due to pion poles and can be numerically important. We illustrate the impact of these effects with several examples.
Dark matter could emerge along with the Higgs as a composite pseudo-Nambu-Goldstone boson $chi$ with decay constant $fsim mathrm{TeV}$. This type of WIMP is especially compelling because its leading interaction with the Standard Model, the derivative Higgs portal, has the correct annihilation strength for thermal freeze-out if $m_chi sim O(100)$ GeV, but is negligible in direct detection experiments due to the very small momentum transfer. The explicit breaking of the shift symmetry which radiatively generates $m_chi$, however, introduces non-derivative DM interactions. In existing realizations a marginal Higgs portal coupling $lambda$ is generated with size comparable to the Higgs quartic, and thus well within reach of XENON1T. Here, we present and analyze the interesting case where the pattern of explicit symmetry breaking naturally suppresses $lambda$ beyond the reach of current and future direct detection experiments. If the DM acquires mass from bottom quark loops, the bottom quark also mediates suppressed DM-nucleus scattering with cross sections that will be eventually probed by LZ. Alternatively, the DM can obtain mass from gauging its stabilizing $U(1)$ symmetry. No direct detection signal is expected even at future facilities, but the introduction of a dark photon $gamma_D$ has a number of phenomenological implications which we study in detail, treating $m_{gamma_D}$ as a free parameter. Complementary probes of the dark sector include indirect DM detection, DM self-interactions, and extra radiation, as well as collider experiments. We frame our discussion in an effective field theory, motivating our parameter choices with a detailed analysis of an $SO(7)/SO(6)$ composite Higgs model, which can yield either scenario at low energies.
We derive spectral lineshapes of the expected signal for a haloscope experiment searching for axionlike dark matter. The knowledge of these lineshapes is needed to optimize the experimental design and data analysis procedure. We extend the previously known results for the axion-photon and axion-gluon couplings to the case of gradient (axion-fermion) coupling. A unique feature of the gradient interaction is its dependence not only on magnitudes but also on directions of velocities of galactic halo particles, which leads to directional sensitivity of the corresponding haloscope. We also discuss the daily and annual modulations of the gradient signal caused by the Earths rotational and orbital motions. In the case of detection, these periodic modulations will be an important confirmation that the signal is sourced by axionlike particles in the halo of our galaxy.
The correlation between the invisible Higgs branching ratio ($B_h^{rm inv} $) vs. dark matter (DM) direct detection ($sigma_p^{rm SI}$) in Higgs portal DM models is usually presented in the effective field theory (EFT) framework. This is fine for sin glet scalar DM, but not in the singlet fermion DM (SFDM) or vector DM (VDM) models. In this paper, we derive the explicit expressions for this correlation within UV completions of SFDM and VDM models with Higgs portals, and discuss the limitation of the EFT approach. We show that there are at least two additional hidden parameter in $sigma_p^{rm SI}$ in the UV completions: the singlet-like scalar mass $m_2$ and its mixing angle $alpha$ with the SM Higgs boson ($h$). In particular, if the singlet-like scalar is lighter than the SM Higgs boson ($m_2 < m_h cos alpha / sqrt{1 + cos^2 alpha}$), the collider bound becomes weaker than the one based on EFT.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا