ﻻ يوجد ملخص باللغة العربية
Fully Homomorphic Encryption (FHE) is a relatively recent advancement in the field of privacy-preserving technologies. FHE allows for the arbitrary depth computation of both addition and multiplication, and thus the application of abelian/polynomial equations, like those found in deep learning algorithms. This project investigates, derives, and proves how FHE with deep learning can be used at scale, with relatively low time complexity, the problems that such a system incurs, and mitigations/solutions for such problems. In addition, we discuss how this could have an impact on the future of data privacy and how it can enable data sharing across various actors in the agri-food supply chain, hence allowing the development of machine learning-based systems. Finally, we find that although FHE incurs a high spatial complexity cost, the time complexity is within expected reasonable bounds, while allowing for absolutely private predictions to be made, in our case for milk yield prediction.
Fully homomorphic encryption (FHE) enables a simple, attractive framework for secure search. Compared to other secure search systems, no costly setup procedure is necessary; it is sufficient for the client merely to upload the encrypted database to t
Individuals and organizations tend to migrate their data to clouds, especially in a DataBase as a Service (DBaaS) pattern. The major obstacle is the conflict between secrecy and utilization of the relational database to be outsourced. We address this
Deep Learning (DL) is vulnerable to out-of-distribution and adversarial examples resulting in incorrect outputs. To make DL more robust, several posthoc (or runtime) anomaly detection techniques to detect (and discard) these anomalous samples have be
Remote monitoring to support aging in place is an active area of research. Advanced computer vision technology based on deep learning can provide near real-time home monitoring to detect falling and symptoms related to seizure, and stroke. Affordable
New cryptographic techniques such as homomorphic encryption (HE) allow computations to be outsourced to and evaluated blindfolded in a resourceful cloud. These computations often require private data owned by multiple participants, engaging in joint