ﻻ يوجد ملخص باللغة العربية
Remote monitoring to support aging in place is an active area of research. Advanced computer vision technology based on deep learning can provide near real-time home monitoring to detect falling and symptoms related to seizure, and stroke. Affordable webcams, together with cloud computing services (to run machine learning algorithms), can potentially bring significant social and health benefits. However, it has not been deployed in practice because of privacy and security concerns. People may feel uncomfortable sending their videos of daily activities (with potentially sensitive private information) to a computing service provider (e.g., on a commercial cloud). In this paper, we propose a novel strategy to resolve this dilemma by applying fully homomorphic encryption (FHE) to an alternative representation of human actions (i.e., skeleton joints), which guarantees information confidentiality while retaining high-performance action detection at a low cost. We design an FHE-friendly neural network for action recognition and present a secure neural network evaluation strategy to achieve near real-time action detection. Our framework for private inference achieves an 87.99% recognition accuracy (86.21% sensitivity and 99.14% specificity in detecting falls) with a latency of 3.1 seconds on real-world datasets. Our evaluation shows that our elaborated and fine-tuned method reduces the inference latency by 23.81%~74.67% over a straightforward implementation.
New cryptographic techniques such as homomorphic encryption (HE) allow computations to be outsourced to and evaluated blindfolded in a resourceful cloud. These computations often require private data owned by multiple participants, engaging in joint
Emerging neural networks based machine learning techniques such as deep learning and its variants have shown tremendous potential in many application domains. However, they raise serious privacy concerns due to the risk of leakage of highly privacy-s
Fully homomorphic encryption (FHE) enables a simple, attractive framework for secure search. Compared to other secure search systems, no costly setup procedure is necessary; it is sufficient for the client merely to upload the encrypted database to t
The robust recognition and assessment of human actions are crucial in human-robot interaction (HRI) domains. While state-of-the-art models of action perception show remarkable results in large-scale action datasets, they mostly lack the flexibility,
Skeleton-based human action recognition has attracted great interest thanks to the easy accessibility of the human skeleton data. Recently, there is a trend of using very deep feedforward neural networks to model the 3D coordinates of joints without