ﻻ يوجد ملخص باللغة العربية
This work presents a nonintrusive physics-preserving method to learn reduced-order models (ROMs) of Hamiltonian systems. Traditional intrusive projection-based model reduction approaches utilize symplectic Galerkin projection to construct Hamiltonian reduced models by projecting Hamiltons equations of the full model onto a symplectic subspace. This symplectic projection requires complete knowledge about the full model operators and full access to manipulate the computer code. In contrast, the proposed Hamiltonian operator inference approach embeds the physics into the operator inference framework to develop a data-driven model reduction method that preserves the underlying symplectic structure. Our method exploits knowledge of the Hamiltonian functional to define and parametrize a Hamiltonian ROM form which can then be learned from data projected via symplectic projectors. The proposed method is `gray-box in that it utilizes knowledge of the Hamiltonian structure at the partial differential equation level, as well as knowledge of spatially local components in the system. However, it does not require access to computer code, only data to learn the models. Our numerical results demonstrate Hamiltonian operator inference on a linear wave equation, the cubic nonlinear Schr{o}dinger equation, and a nonpolynomial sine-Gordon equation. Accurate long-time predictions far outside the training time interval for nonlinear examples illustrate the generalizability of our learned models.
The paper deals with numerical discretizations of separable nonlinear Hamiltonian systems with additive noise. For such problems, the expected value of the total energy, along the exact solution, drifts linearly with time. We present and analyze a ti
This paper contributes with a new formal method of spatial discretization of a class of nonlinear distributed parameter systems that allow a port-Hamiltonian representation over a one dimensional manifold. A specific finite dimensional port-Hamiltoni
Generalized Additive Runge-Kutta schemes have shown to be a suitable tool for solving ordinary differential equations with additively partitioned right-hand sides. This work generalizes these GARK schemes to symplectic GARK schemes for additively par
Reduced basis methods are popular for approximately solving large and complex systems of differential equations. However, conventional reduced basis methods do not generally preserve conservation laws and symmetries of the full order model. Here, we
While reduced-order models (ROMs) have been popular for efficiently solving large systems of differential equations, the stability of reduced models over long-time integration is of present challenges. We present a greedy approach for ROM generation